Newer
Older
Telegram / TMessagesProj / jni / boringssl / crypto / bn / convert.c
ubt on 31 Oct 2017 12 KB init
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.] */

#include <openssl/bn.h>

#include <ctype.h>
#include <stdio.h>
#include <string.h>

#include <openssl/bio.h>
#include <openssl/err.h>
#include <openssl/mem.h>

#include "internal.h"

BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret) {
  unsigned num_words, m;
  BN_ULONG word = 0;
  BIGNUM *bn = NULL;

  if (ret == NULL) {
    ret = bn = BN_new();
  }

  if (ret == NULL) {
    return NULL;
  }

  if (len == 0) {
    ret->top = 0;
    return ret;
  }

  num_words = ((len - 1) / BN_BYTES) + 1;
  m = (len - 1) % BN_BYTES;
  if (bn_wexpand(ret, num_words) == NULL) {
    if (bn) {
      BN_free(bn);
    }
    return NULL;
  }

  ret->top = num_words;
  ret->neg = 0;

  while (len--) {
    word = (word << 8) | *(in++);
    if (m-- == 0) {
      ret->d[--num_words] = word;
      word = 0;
      m = BN_BYTES - 1;
    }
  }

  /* need to call this due to clear byte at top if avoiding having the top bit
   * set (-ve number) */
  bn_correct_top(ret);
  return ret;
}

size_t BN_bn2bin(const BIGNUM *in, uint8_t *out) {
  size_t n, i;
  BN_ULONG l;

  n = i = BN_num_bytes(in);
  while (i--) {
    l = in->d[i / BN_BYTES];
    *(out++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff;
  }
  return n;
}

/* constant_time_select_ulong returns |x| if |v| is 1 and |y| if |v| is 0. Its
 * behavior is undefined if |v| takes any other value. */
static BN_ULONG constant_time_select_ulong(int v, BN_ULONG x, BN_ULONG y) {
  BN_ULONG mask = v;
  mask--;

  return (~mask & x) | (mask & y);
}

/* constant_time_le_size_t returns 1 if |x| <= |y| and 0 otherwise. |x| and |y|
 * must not have their MSBs set. */
static int constant_time_le_size_t(size_t x, size_t y) {
  return ((x - y - 1) >> (sizeof(size_t) * 8 - 1)) & 1;
}

/* read_word_padded returns the |i|'th word of |in|, if it is not out of
 * bounds. Otherwise, it returns 0. It does so without branches on the size of
 * |in|, however it necessarily does not have the same memory access pattern. If
 * the access would be out of bounds, it reads the last word of |in|. |in| must
 * not be zero. */
static BN_ULONG read_word_padded(const BIGNUM *in, size_t i) {
  /* Read |in->d[i]| if valid. Otherwise, read the last word. */
  BN_ULONG l = in->d[constant_time_select_ulong(
      constant_time_le_size_t(in->dmax, i), in->dmax - 1, i)];

  /* Clamp to zero if above |d->top|. */
  return constant_time_select_ulong(constant_time_le_size_t(in->top, i), 0, l);
}

int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in) {
  size_t i;
  BN_ULONG l;

  /* Special case for |in| = 0. Just branch as the probability is negligible. */
  if (BN_is_zero(in)) {
    memset(out, 0, len);
    return 1;
  }

  /* Check if the integer is too big. This case can exit early in non-constant
   * time. */
  if ((size_t)in->top > (len + (BN_BYTES - 1)) / BN_BYTES) {
    return 0;
  }
  if ((len % BN_BYTES) != 0) {
    l = read_word_padded(in, len / BN_BYTES);
    if (l >> (8 * (len % BN_BYTES)) != 0) {
      return 0;
    }
  }

  /* Write the bytes out one by one. Serialization is done without branching on
   * the bits of |in| or on |in->top|, but if the routine would otherwise read
   * out of bounds, the memory access pattern can't be fixed. However, for an
   * RSA key of size a multiple of the word size, the probability of BN_BYTES
   * leading zero octets is low.
   *
   * See Falko Stenzke, "Manger's Attack revisited", ICICS 2010. */
  i = len;
  while (i--) {
    l = read_word_padded(in, i / BN_BYTES);
    *(out++) = (uint8_t)(l >> (8 * (i % BN_BYTES))) & 0xff;
  }
  return 1;
}

static const char hextable[] = "0123456789abcdef";

char *BN_bn2hex(const BIGNUM *bn) {
  int i, j, v, z = 0;
  char *buf;
  char *p;

  buf = (char *)OPENSSL_malloc(bn->top * BN_BYTES * 2 + 2);
  if (buf == NULL) {
    OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
    return NULL;
  }

  p = buf;
  if (bn->neg) {
    *(p++) = '-';
  }

  if (BN_is_zero(bn)) {
    *(p++) = '0';
  }

  for (i = bn->top - 1; i >= 0; i--) {
    for (j = BN_BITS2 - 8; j >= 0; j -= 8) {
      /* strip leading zeros */
      v = ((int)(bn->d[i] >> (long)j)) & 0xff;
      if (z || v != 0) {
        *(p++) = hextable[v >> 4];
        *(p++) = hextable[v & 0x0f];
        z = 1;
      }
    }
  }
  *p = '\0';

  return buf;
}

/* decode_hex decodes |i| bytes of hex data from |in| and updates |bn|. */
static void decode_hex(BIGNUM *bn, const char *in, int i) {
  int h, m, j, k, c;
  BN_ULONG l=0;

  j = i; /* least significant 'hex' */
  h = 0;
  while (j > 0) {
    m = ((BN_BYTES * 2) <= j) ? (BN_BYTES * 2) : j;
    l = 0;
    for (;;) {
      c = in[j - m];
      if ((c >= '0') && (c <= '9')) {
        k = c - '0';
      } else if ((c >= 'a') && (c <= 'f')) {
        k = c - 'a' + 10;
      } else if ((c >= 'A') && (c <= 'F')) {
        k = c - 'A' + 10;
      } else {
        k = 0; /* paranoia */
      }

      l = (l << 4) | k;

      if (--m <= 0) {
        bn->d[h++] = l;
        break;
      }
    }

    j -= (BN_BYTES * 2);
  }

  bn->top = h;
}

/* decode_dec decodes |in_len| bytes of decimal data from |in| and updates |bn|. */
static void decode_dec(BIGNUM *bn, const char *in, int in_len) {
  int i, j;
  BN_ULONG l = 0;

  j = BN_DEC_NUM - (in_len % BN_DEC_NUM);
  if (j == BN_DEC_NUM) {
    j = 0;
  }
  l = 0;
  for (i = 0; i < in_len; i++) {
    l *= 10;
    l += in[i] - '0';
    if (++j == BN_DEC_NUM) {
      BN_mul_word(bn, BN_DEC_CONV);
      BN_add_word(bn, l);
      l = 0;
      j = 0;
    }
  }
}

typedef void (*decode_func) (BIGNUM *bn, const char *in, int i);
typedef int (*char_test_func) (int c);

static int bn_x2bn(BIGNUM **outp, const char *in, decode_func decode, char_test_func want_char) {
  BIGNUM *ret = NULL;
  int neg = 0, i;
  int num;

  if (in == NULL || *in == 0) {
    return 0;
  }

  if (*in == '-') {
    neg = 1;
    in++;
  }

  for (i = 0; want_char((unsigned char)in[i]); i++) {}

  num = i + neg;
  if (outp == NULL) {
    return num;
  }

  /* in is the start of the hex digits, and it is 'i' long */
  if (*outp == NULL) {
    ret = BN_new();
    if (ret == NULL) {
      return 0;
    }
  } else {
    ret = *outp;
    BN_zero(ret);
  }

  /* i is the number of hex digests; */
  if (bn_expand(ret, i * 4) == NULL) {
    goto err;
  }

  decode(ret, in, i);

  bn_correct_top(ret);
  if (!BN_is_zero(ret)) {
    ret->neg = neg;
  }

  *outp = ret;
  return num;

err:
  if (*outp == NULL) {
    BN_free(ret);
  }

  return 0;
}

int BN_hex2bn(BIGNUM **outp, const char *in) {
  return bn_x2bn(outp, in, decode_hex, isxdigit);
}

char *BN_bn2dec(const BIGNUM *a) {
  int i = 0, num, ok = 0;
  char *buf = NULL;
  char *p;
  BIGNUM *t = NULL;
  BN_ULONG *bn_data = NULL, *lp;

  /* get an upper bound for the length of the decimal integer
   * num <= (BN_num_bits(a) + 1) * log(2)
   *     <= 3 * BN_num_bits(a) * 0.1001 + log(2) + 1     (rounding error)
   *     <= BN_num_bits(a)/10 + BN_num_bits/1000 + 1 + 1
   */
  i = BN_num_bits(a) * 3;
  num = i / 10 + i / 1000 + 1 + 1;
  bn_data =
      (BN_ULONG *)OPENSSL_malloc((num / BN_DEC_NUM + 1) * sizeof(BN_ULONG));
  buf = (char *)OPENSSL_malloc(num + 3);
  if ((buf == NULL) || (bn_data == NULL)) {
    OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
    goto err;
  }
  t = BN_dup(a);
  if (t == NULL) {
    goto err;
  }

#define BUF_REMAIN (num + 3 - (size_t)(p - buf))
  p = buf;
  lp = bn_data;
  if (BN_is_zero(t)) {
    *(p++) = '0';
    *(p++) = '\0';
  } else {
    if (BN_is_negative(t)) {
      *p++ = '-';
    }

    while (!BN_is_zero(t)) {
      *lp = BN_div_word(t, BN_DEC_CONV);
      lp++;
    }
    lp--;
    /* We now have a series of blocks, BN_DEC_NUM chars
     * in length, where the last one needs truncation.
     * The blocks need to be reversed in order. */
    BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT1, *lp);
    while (*p) {
      p++;
    }
    while (lp != bn_data) {
      lp--;
      BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT2, *lp);
      while (*p) {
        p++;
      }
    }
  }
  ok = 1;

err:
  OPENSSL_free(bn_data);
  BN_free(t);
  if (!ok) {
    OPENSSL_free(buf);
    buf = NULL;
  }

  return buf;
}

int BN_dec2bn(BIGNUM **outp, const char *in) {
  return bn_x2bn(outp, in, decode_dec, isdigit);
}

int BN_asc2bn(BIGNUM **outp, const char *in) {
  const char *const orig_in = in;
  if (*in == '-') {
    in++;
  }

  if (in[0] == '0' && (in[1] == 'X' || in[1] == 'x')) {
    if (!BN_hex2bn(outp, in+2)) {
      return 0;
    }
  } else {
    if (!BN_dec2bn(outp, in)) {
      return 0;
    }
  }

  if (*orig_in == '-' && !BN_is_zero(*outp)) {
    (*outp)->neg = 1;
  }

  return 1;
}

int BN_print(BIO *bp, const BIGNUM *a) {
  int i, j, v, z = 0;
  int ret = 0;

  if (a->neg && BIO_write(bp, "-", 1) != 1) {
    goto end;
  }

  if (BN_is_zero(a) && BIO_write(bp, "0", 1) != 1) {
    goto end;
  }

  for (i = a->top - 1; i >= 0; i--) {
    for (j = BN_BITS2 - 4; j >= 0; j -= 4) {
      /* strip leading zeros */
      v = ((int)(a->d[i] >> (long)j)) & 0x0f;
      if (z || v != 0) {
        if (BIO_write(bp, &hextable[v], 1) != 1) {
          goto end;
        }
        z = 1;
      }
    }
  }
  ret = 1;

end:
  return ret;
}

int BN_print_fp(FILE *fp, const BIGNUM *a) {
  BIO *b;
  int ret;

  b = BIO_new(BIO_s_file());
  if (b == NULL) {
    return 0;
  }
  BIO_set_fp(b, fp, BIO_NOCLOSE);
  ret = BN_print(b, a);
  BIO_free(b);

  return ret;
}

BN_ULONG BN_get_word(const BIGNUM *bn) {
  switch (bn->top) {
    case 0:
      return 0;
    case 1:
      return bn->d[0];
    default:
      return BN_MASK2;
  }
}