Newer
Older
Telegram / TMessagesProj / jni / boringssl / crypto / sha / sha512.c
ubt on 31 Oct 2017 20 KB init
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.] */

#include <openssl/sha.h>

#include <string.h>

#include <openssl/mem.h>

#include "../internal.h"


/* IMPLEMENTATION NOTES.
 *
 * As you might have noticed 32-bit hash algorithms:
 *
 * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
 * - optimized versions implement two transform functions: one operating
 *   on [aligned] data in host byte order and one - on data in input
 *   stream byte order;
 * - share common byte-order neutral collector and padding function
 *   implementations, ../md32_common.h;
 *
 * Neither of the above applies to this SHA-512 implementations. Reasons
 * [in reverse order] are:
 *
 * - it's the only 64-bit hash algorithm for the moment of this writing,
 *   there is no need for common collector/padding implementation [yet];
 * - by supporting only one transform function [which operates on
 *   *aligned* data in input stream byte order, big-endian in this case]
 *   we minimize burden of maintenance in two ways: a) collector/padding
 *   function is simpler; b) only one transform function to stare at;
 * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
 *   apply a number of optimizations to mitigate potential performance
 *   penalties caused by previous design decision; */

#if !defined(OPENSSL_NO_ASM) &&                         \
    (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
     defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
#define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
#define SHA512_ASM
#endif

int SHA384_Init(SHA512_CTX *sha) {
  sha->h[0] = OPENSSL_U64(0xcbbb9d5dc1059ed8);
  sha->h[1] = OPENSSL_U64(0x629a292a367cd507);
  sha->h[2] = OPENSSL_U64(0x9159015a3070dd17);
  sha->h[3] = OPENSSL_U64(0x152fecd8f70e5939);
  sha->h[4] = OPENSSL_U64(0x67332667ffc00b31);
  sha->h[5] = OPENSSL_U64(0x8eb44a8768581511);
  sha->h[6] = OPENSSL_U64(0xdb0c2e0d64f98fa7);
  sha->h[7] = OPENSSL_U64(0x47b5481dbefa4fa4);

  sha->Nl = 0;
  sha->Nh = 0;
  sha->num = 0;
  sha->md_len = SHA384_DIGEST_LENGTH;
  return 1;
}


int SHA512_Init(SHA512_CTX *sha) {
  sha->h[0] = OPENSSL_U64(0x6a09e667f3bcc908);
  sha->h[1] = OPENSSL_U64(0xbb67ae8584caa73b);
  sha->h[2] = OPENSSL_U64(0x3c6ef372fe94f82b);
  sha->h[3] = OPENSSL_U64(0xa54ff53a5f1d36f1);
  sha->h[4] = OPENSSL_U64(0x510e527fade682d1);
  sha->h[5] = OPENSSL_U64(0x9b05688c2b3e6c1f);
  sha->h[6] = OPENSSL_U64(0x1f83d9abfb41bd6b);
  sha->h[7] = OPENSSL_U64(0x5be0cd19137e2179);

  sha->Nl = 0;
  sha->Nh = 0;
  sha->num = 0;
  sha->md_len = SHA512_DIGEST_LENGTH;
  return 1;
}

uint8_t *SHA384(const uint8_t *data, size_t len, uint8_t *out) {
  SHA512_CTX ctx;
  static uint8_t buf[SHA384_DIGEST_LENGTH];

  /* TODO(fork): remove this static buffer. */
  if (out == NULL) {
    out = buf;
  }

  SHA384_Init(&ctx);
  SHA512_Update(&ctx, data, len);
  SHA512_Final(out, &ctx);
  OPENSSL_cleanse(&ctx, sizeof(ctx));
  return out;
}

uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out) {
  SHA512_CTX ctx;
  static uint8_t buf[SHA512_DIGEST_LENGTH];

  /* TODO(fork): remove this static buffer. */
  if (out == NULL) {
    out = buf;
  }
  SHA512_Init(&ctx);
  SHA512_Update(&ctx, data, len);
  SHA512_Final(out, &ctx);
  OPENSSL_cleanse(&ctx, sizeof(ctx));
  return out;
}

#if !defined(SHA512_ASM)
static
#endif
void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);


int SHA384_Final(uint8_t *md, SHA512_CTX *sha) {
  return SHA512_Final(md, sha);
}

int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
  return SHA512_Update(sha, data, len);
}

void SHA512_Transform(SHA512_CTX *c, const uint8_t *data) {
#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  if ((size_t)data % sizeof(c->u.d[0]) != 0) {
    memcpy(c->u.p, data, sizeof(c->u.p));
    data = c->u.p;
  }
#endif
  sha512_block_data_order(c, data, 1);
}

int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
  uint64_t l;
  uint8_t *p = c->u.p;
  const uint8_t *data = (const uint8_t *)in_data;

  if (len == 0) {
    return 1;
  }

  l = (c->Nl + (((uint64_t)len) << 3)) & OPENSSL_U64(0xffffffffffffffff);
  if (l < c->Nl) {
    c->Nh++;
  }
  if (sizeof(len) >= 8) {
    c->Nh += (((uint64_t)len) >> 61);
  }
  c->Nl = l;

  if (c->num != 0) {
    size_t n = sizeof(c->u) - c->num;

    if (len < n) {
      memcpy(p + c->num, data, len);
      c->num += (unsigned int)len;
      return 1;
    } else {
      memcpy(p + c->num, data, n), c->num = 0;
      len -= n;
      data += n;
      sha512_block_data_order(c, p, 1);
    }
  }

  if (len >= sizeof(c->u)) {
#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
    if ((size_t)data % sizeof(c->u.d[0]) != 0) {
      while (len >= sizeof(c->u)) {
        memcpy(p, data, sizeof(c->u));
        sha512_block_data_order(c, p, 1);
        len -= sizeof(c->u);
        data += sizeof(c->u);
      }
    } else
#endif
    {
      sha512_block_data_order(c, data, len / sizeof(c->u));
      data += len;
      len %= sizeof(c->u);
      data -= len;
    }
  }

  if (len != 0) {
    memcpy(p, data, len);
    c->num = (int)len;
  }

  return 1;
}

int SHA512_Final(uint8_t *md, SHA512_CTX *sha) {
  uint8_t *p = (uint8_t *)sha->u.p;
  size_t n = sha->num;

  p[n] = 0x80; /* There always is a room for one */
  n++;
  if (n > (sizeof(sha->u) - 16)) {
    memset(p + n, 0, sizeof(sha->u) - n);
    n = 0;
    sha512_block_data_order(sha, p, 1);
  }

  memset(p + n, 0, sizeof(sha->u) - 16 - n);
  p[sizeof(sha->u) - 1] = (uint8_t)(sha->Nl);
  p[sizeof(sha->u) - 2] = (uint8_t)(sha->Nl >> 8);
  p[sizeof(sha->u) - 3] = (uint8_t)(sha->Nl >> 16);
  p[sizeof(sha->u) - 4] = (uint8_t)(sha->Nl >> 24);
  p[sizeof(sha->u) - 5] = (uint8_t)(sha->Nl >> 32);
  p[sizeof(sha->u) - 6] = (uint8_t)(sha->Nl >> 40);
  p[sizeof(sha->u) - 7] = (uint8_t)(sha->Nl >> 48);
  p[sizeof(sha->u) - 8] = (uint8_t)(sha->Nl >> 56);
  p[sizeof(sha->u) - 9] = (uint8_t)(sha->Nh);
  p[sizeof(sha->u) - 10] = (uint8_t)(sha->Nh >> 8);
  p[sizeof(sha->u) - 11] = (uint8_t)(sha->Nh >> 16);
  p[sizeof(sha->u) - 12] = (uint8_t)(sha->Nh >> 24);
  p[sizeof(sha->u) - 13] = (uint8_t)(sha->Nh >> 32);
  p[sizeof(sha->u) - 14] = (uint8_t)(sha->Nh >> 40);
  p[sizeof(sha->u) - 15] = (uint8_t)(sha->Nh >> 48);
  p[sizeof(sha->u) - 16] = (uint8_t)(sha->Nh >> 56);

  sha512_block_data_order(sha, p, 1);

  if (md == NULL) {
    /* TODO(davidben): This NULL check is absent in other low-level hash 'final'
     * functions and is one of the few places one can fail. */
    return 0;
  }

  switch (sha->md_len) {
    /* Let compiler decide if it's appropriate to unroll... */
    case SHA384_DIGEST_LENGTH:
      for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
        uint64_t t = sha->h[n];

        *(md++) = (uint8_t)(t >> 56);
        *(md++) = (uint8_t)(t >> 48);
        *(md++) = (uint8_t)(t >> 40);
        *(md++) = (uint8_t)(t >> 32);
        *(md++) = (uint8_t)(t >> 24);
        *(md++) = (uint8_t)(t >> 16);
        *(md++) = (uint8_t)(t >> 8);
        *(md++) = (uint8_t)(t);
      }
      break;
    case SHA512_DIGEST_LENGTH:
      for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
        uint64_t t = sha->h[n];

        *(md++) = (uint8_t)(t >> 56);
        *(md++) = (uint8_t)(t >> 48);
        *(md++) = (uint8_t)(t >> 40);
        *(md++) = (uint8_t)(t >> 32);
        *(md++) = (uint8_t)(t >> 24);
        *(md++) = (uint8_t)(t >> 16);
        *(md++) = (uint8_t)(t >> 8);
        *(md++) = (uint8_t)(t);
      }
      break;
    /* ... as well as make sure md_len is not abused. */
    default:
      /* TODO(davidben): This bad |md_len| case is one of the few places a
       * low-level hash 'final' function can fail. This should never happen. */
      return 0;
  }

  return 1;
}

#ifndef SHA512_ASM
static const uint64_t K512[80] = {
    0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f,
    0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019,
    0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242,
    0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
    0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,
    0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3,
    0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275,
    0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
    0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f,
    0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
    0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc,
    0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
    0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6,
    0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001,
    0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,
    0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
    0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99,
    0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb,
    0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc,
    0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
    0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915,
    0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207,
    0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba,
    0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
    0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,
    0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a,
    0x5fcb6fab3ad6faec, 0x6c44198c4a475817};

#if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM)
#if defined(__x86_64) || defined(__x86_64__)
#define ROTR(a, n)                                         \
  ({                                                       \
    uint64_t ret;                                          \
    asm("rorq %1,%0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \
    ret;                                                   \
  })
#define PULL64(x)                               \
  ({                                            \
    uint64_t ret = *((const uint64_t *)(&(x))); \
    asm("bswapq	%0" : "=r"(ret) : "0"(ret));    \
    ret;                                        \
  })
#elif(defined(__i386) || defined(__i386__))
#define PULL64(x)                                                         \
  ({                                                                      \
    const unsigned int *p = (const unsigned int *)(&(x));                 \
    unsigned int hi = p[0], lo = p[1];                                    \
    asm("bswapl %0; bswapl %1;" : "=r"(lo), "=r"(hi) : "0"(lo), "1"(hi)); \
    ((uint64_t)hi) << 32 | lo;                                            \
  })
#elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
#define ROTR(a, n)                                       \
  ({                                                     \
    uint64_t ret;                                        \
    asm("rotrdi %0,%1,%2" : "=r"(ret) : "r"(a), "K"(n)); \
    ret;                                                 \
  })
#elif defined(__aarch64__)
#define ROTR(a, n)                                    \
  ({                                                  \
    uint64_t ret;                                     \
    asm("ror %0,%1,%2" : "=r"(ret) : "r"(a), "I"(n)); \
    ret;                                              \
  })
#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
    __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define PULL64(x)                                                       \
  ({                                                                    \
    uint64_t ret;                                                       \
    asm("rev	%0,%1" : "=r"(ret) : "r"(*((const uint64_t *)(&(x))))); \
    ret;                                                                \
  })
#endif
#endif
#elif defined(_MSC_VER)
#if defined(_WIN64) /* applies to both IA-64 and AMD64 */
#pragma intrinsic(_rotr64)
#define ROTR(a, n) _rotr64((a), n)
#endif
#if defined(_M_IX86) && !defined(OPENSSL_NO_ASM)
static uint64_t __fastcall __pull64be(const void *x) {
  _asm mov edx, [ecx + 0]
  _asm mov eax, [ecx + 4]
  _asm bswap edx
  _asm bswap eax
}
#define PULL64(x) __pull64be(&(x))
#if _MSC_VER <= 1200
#pragma inline_depth(0)
#endif
#endif
#endif

#ifndef PULL64
#define B(x, j) \
  (((uint64_t)(*(((const uint8_t *)(&x)) + j))) << ((7 - j) * 8))
#define PULL64(x)                                                        \
  (B(x, 0) | B(x, 1) | B(x, 2) | B(x, 3) | B(x, 4) | B(x, 5) | B(x, 6) | \
   B(x, 7))
#endif

#ifndef ROTR
#define ROTR(x, s) (((x) >> s) | (x) << (64 - s))
#endif

#define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
#define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
#define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
#define sigma1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6))

#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))


#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
/*
 * This code should give better results on 32-bit CPU with less than
 * ~24 registers, both size and performance wise...
 */
static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
                                    size_t num) {
  const uint64_t *W = in;
  uint64_t A, E, T;
  uint64_t X[9 + 80], *F;
  int i;

  while (num--) {
    F = X + 80;
    A = ctx->h[0];
    F[1] = ctx->h[1];
    F[2] = ctx->h[2];
    F[3] = ctx->h[3];
    E = ctx->h[4];
    F[5] = ctx->h[5];
    F[6] = ctx->h[6];
    F[7] = ctx->h[7];

    for (i = 0; i < 16; i++, F--) {
      T = PULL64(W[i]);
      F[0] = A;
      F[4] = E;
      F[8] = T;
      T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
      E = F[3] + T;
      A = T + Sigma0(A) + Maj(A, F[1], F[2]);
    }

    for (; i < 80; i++, F--) {
      T = sigma0(F[8 + 16 - 1]);
      T += sigma1(F[8 + 16 - 14]);
      T += F[8 + 16] + F[8 + 16 - 9];

      F[0] = A;
      F[4] = E;
      F[8] = T;
      T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
      E = F[3] + T;
      A = T + Sigma0(A) + Maj(A, F[1], F[2]);
    }

    ctx->h[0] += A;
    ctx->h[1] += F[1];
    ctx->h[2] += F[2];
    ctx->h[3] += F[3];
    ctx->h[4] += E;
    ctx->h[5] += F[5];
    ctx->h[6] += F[6];
    ctx->h[7] += F[7];

    W += 16;
  }
}

#else

#define ROUND_00_15(i, a, b, c, d, e, f, g, h)   \
  do {                                           \
    T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
    h = Sigma0(a) + Maj(a, b, c);                \
    d += T1;                                     \
    h += T1;                                     \
  } while (0)

#define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X)   \
  do {                                                 \
    s0 = X[(j + 1) & 0x0f];                            \
    s0 = sigma0(s0);                                   \
    s1 = X[(j + 14) & 0x0f];                           \
    s1 = sigma1(s1);                                   \
    T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
    ROUND_00_15(i + j, a, b, c, d, e, f, g, h);        \
  } while (0)

static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
                                    size_t num) {
  const uint64_t *W = in;
  uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
  uint64_t X[16];
  int i;

  while (num--) {

    a = ctx->h[0];
    b = ctx->h[1];
    c = ctx->h[2];
    d = ctx->h[3];
    e = ctx->h[4];
    f = ctx->h[5];
    g = ctx->h[6];
    h = ctx->h[7];

    T1 = X[0] = PULL64(W[0]);
    ROUND_00_15(0, a, b, c, d, e, f, g, h);
    T1 = X[1] = PULL64(W[1]);
    ROUND_00_15(1, h, a, b, c, d, e, f, g);
    T1 = X[2] = PULL64(W[2]);
    ROUND_00_15(2, g, h, a, b, c, d, e, f);
    T1 = X[3] = PULL64(W[3]);
    ROUND_00_15(3, f, g, h, a, b, c, d, e);
    T1 = X[4] = PULL64(W[4]);
    ROUND_00_15(4, e, f, g, h, a, b, c, d);
    T1 = X[5] = PULL64(W[5]);
    ROUND_00_15(5, d, e, f, g, h, a, b, c);
    T1 = X[6] = PULL64(W[6]);
    ROUND_00_15(6, c, d, e, f, g, h, a, b);
    T1 = X[7] = PULL64(W[7]);
    ROUND_00_15(7, b, c, d, e, f, g, h, a);
    T1 = X[8] = PULL64(W[8]);
    ROUND_00_15(8, a, b, c, d, e, f, g, h);
    T1 = X[9] = PULL64(W[9]);
    ROUND_00_15(9, h, a, b, c, d, e, f, g);
    T1 = X[10] = PULL64(W[10]);
    ROUND_00_15(10, g, h, a, b, c, d, e, f);
    T1 = X[11] = PULL64(W[11]);
    ROUND_00_15(11, f, g, h, a, b, c, d, e);
    T1 = X[12] = PULL64(W[12]);
    ROUND_00_15(12, e, f, g, h, a, b, c, d);
    T1 = X[13] = PULL64(W[13]);
    ROUND_00_15(13, d, e, f, g, h, a, b, c);
    T1 = X[14] = PULL64(W[14]);
    ROUND_00_15(14, c, d, e, f, g, h, a, b);
    T1 = X[15] = PULL64(W[15]);
    ROUND_00_15(15, b, c, d, e, f, g, h, a);

    for (i = 16; i < 80; i += 16) {
      ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
      ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
      ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
      ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
      ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
      ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
      ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
      ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
      ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
      ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
      ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
      ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
      ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
      ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
      ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
      ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
    }

    ctx->h[0] += a;
    ctx->h[1] += b;
    ctx->h[2] += c;
    ctx->h[3] += d;
    ctx->h[4] += e;
    ctx->h[5] += f;
    ctx->h[6] += g;
    ctx->h[7] += h;

    W += 16;
  }
}

#endif

#endif /* SHA512_ASM */