Newer
Older
csv2brain / app / src / main / assets / exam / c_12_05.json
ubt on 24 Jan 2024 84 KB 增加习题列表
{"msg":"第五节 运筹方法(网络计划技术、线性规划、预测、决策、库存管理、模拟)","code":200,"data":{"currentIndex":null,"examId":null,"examTime":null,"questionList":[{"id":"796239636337807361","title":"线性规划问题的数学模型通常由(53)组成。","analyze":"本题考查应用数学基础知识。<br>许多实际应用问题常需要求出一组决策变量的值,这些变量应满足一定的约束条件,并使某个函数达到极大(或极小)值。这个函数就称为目标函数。<br>实际问题中的变量一般都是非负的。如果约束条件是一组线性的不等式(或等式),目标函数也是线性的,那么这种问题就称为线性规划问题。<br>例如,如下的数学模型就是典型的线性规划问题:<br><img alt=\"\" width=\"284\" height=\"73\" src=\"https://image.chaiding.com/ruankao/a5e2f3292bf9789e9ede6c1909d01039.jpg?x-oss-process=style/ruankaodaren\"><br>因此,线性规划问题的数学模型通常由线性目标函数、线性约束条件和变量非负条件组成。","multi":0,"questionType":1,"answer":"C","chooseItem":["796239637285720065"],"itemList":[{"id":"796239637239582721","questionId":"796239636337807361","content":" 初始值、线性迭代式、收敛条件","answer":0,"chooseValue":"A"},{"id":"796239637260554241","questionId":"796239636337807361","content":" 线性目标函数、线性进度计划、资源分配、可能的问题与应对措施","answer":0,"chooseValue":"B"},{"id":"796239637285720065","questionId":"796239636337807361","content":" 线性目标函数、线性约束条件、变量非负条件","answer":1,"chooseValue":"C"},{"id":"796239637302497281","questionId":"796239636337807361","content":" 网络计划图、资源分配","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796239626003042305","title":"<p><strong>请作答第<span style=\"color: red\">2</span>个空。</strong></p>线性规划问题就是求出一组变量,在一组线性约束条件下,使某个线性目标函数达到极大(小)值。满足线性约束条件的变量区域称为可行解区。由于可行解区的边界均是线性的(平直的),属于单纯形,所以线性目标函数的极值只要存在,就一定会在可行解区边界的某个顶点达到。因此,在求解线性规划问题时,如果容易求出可行解区的所有顶点,那么只要在这些顶点处比较目标函数的值就可以了。<br>例如,线性规划问题:maxS=x+y (求S=x+y的最大值):2x+y&lt;=7,x+2y&lt;=8,x&gt;=0, y&gt;=0的可行解区是由四条直线2x+y=7;x+2y=8,x=0,y=0, 围成的,共有四个顶点。除了原点外,其他三个顶点是(53)。因此,该线性规划问题的解为(54)","analyze":"本题考查应用数学(线性规划)基础知识。<br>本题中的可行解区是由4条直线2x+y=7, x+2y=8, x=0, y=0围成的,可行解区的每 个顶点都是由两条直线相交得到的。<br>2x+y=7与x=0的交点(0,7)不符合条件x+2y&lt;=8,因此(0,7)不是可行解区的顶点(落在可行解区外)》<br>x+2y=8与y=0的交点(8,0)不符合条件2x+y&lt;=7,因此(8,0)不是可行解区的顶点(落在可行解区外)。<br>2x+y=7与x+2y=8的交点(2,3),2x+y=7与y=0的交点(3.5,0),x+2y=8与x=0 的交点(0, 4), x=0与y=0的交点(0, 0)都属于可行解区的顶点。在这4个顶点中, ;x=2,y=3可使目标函数S达到极大值5。","multi":0,"questionType":1,"answer":"A","chooseItem":["796239627043229697"],"itemList":[{"id":"796239627043229697","questionId":"796239626003042305","content":" x=2, y=3","answer":1,"chooseValue":"A"},{"id":"796239627080978433","questionId":"796239626003042305","content":" x=0, y=7","answer":0,"chooseValue":"B"},{"id":"796239627114532865","questionId":"796239626003042305","content":" x=0, y=4","answer":0,"chooseValue":"C"},{"id":"796239627152281601","questionId":"796239626003042305","content":" x=8, y=0","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796239558931927041","title":"某企业开发了一种新产品,拟定的价格方案有三种:较高价、中等价、较低价。估计这种产品的销售状态也有三种:销路较好、销路一般、销路较差。根据以往的销售经验,他们算出,这三种价格方案在三种销路状态下的收益值如下表:<br><img alt=\"\" width=\"552\" height=\"87\" src=\"https://image.chaiding.com/ruankao/eb9e5954e1b8c242ad59d3f079908b4f.jpg?x-oss-process=style/ruankaodaren\"><br>企业一旦选择了某种决策方案,在同样的销路状态下,可能会产生后悔值(即所选决策方案产生的收益与最佳决策收益值的差值)。例如,如果选择较低价决策,在销路较好时,后悔值就为8万元。因此,可以根据上述收益值表制作后悔值表如下(空缺部分有待计算):<br><img alt=\"\" width=\"535\" height=\"85\" src=\"https://image.chaiding.com/ruankao/38c0f47cb05d643fa460f37d8268f04f.jpg?x-oss-process=style/ruankaodaren\"><br>企业做定价决策前,首先需要选择决策标准。该企业决定采用最小-最大后悔值决策标准(坏中求好的保守策略),为此,该企业应选择决策方案(58)。","analyze":"本题考查应用数学基础知识。<br>首先算出各种方案在各种销路状态下的后悔值,填写后悔值表中的空缺部分,并算出每种方案的最大后悔值。<br><img alt=\"\" width=\"535\" height=\"88\" src=\"https://image.chaiding.com/ruankao/08f27cc1062625e69b5b994cd2724ad3.jpg?x-oss-process=style/ruankaodaren\"><br>按照最小最大后悔值决策标准(坏中求好的保守策略),应根据最大后悔值中的最小值来选择对应的决策方案。上表中,最大后悔值中的最小值为4万元(对应中等价),所以决定采用中等价方案。","multi":0,"questionType":1,"answer":"B","chooseItem":["796239559833702401"],"itemList":[{"id":"796239559816925185","questionId":"796239558931927041","content":" 较高价","answer":0,"chooseValue":"A"},{"id":"796239559833702401","questionId":"796239558931927041","content":" 中等价","answer":1,"chooseValue":"B"},{"id":"796239559850479617","questionId":"796239558931927041","content":" 较低价","answer":0,"chooseValue":"C"},{"id":"796239559867256833","questionId":"796239558931927041","content":" 中等价或较低价","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796239594046640129","title":"某项目包括A、B、C、D、E五个作业,各个作业的紧前作业、所需时间和所需人数如下表:<br><img alt=\"\" width=\"546\" height=\"92\" src=\"https://image.chaiding.com/ruankao/183e9460599ae9edee2342ca4d245886.jpg?x-oss-process=style/ruankaodaren\"><br>假设该项目的起始时间为0 (单位:周),为使该项目各作业的进度和人力资源安排更合理,各作业的起始时间应分别为(57)。","analyze":"本题考查应用数学基础知识。<br>根据题意,该项目的网络计划图如下:<br><img alt=\"\" width=\"382\" height=\"142\" src=\"https://image.chaiding.com/ruankao/40797b012665a4a6d28883bdbd97fadd.jpg?x-oss-process=style/ruankaodaren\"><br>该项目的关键路径是ACE,共需要4周。作业A应安排在第0周,作业C应安排在第1、2周,作业E应安排在第3周。作业B可以安排在0~2周的某一周,作业D可以安排在1~3周的某一周。现在需要再考虑人力资源的合理安排。<br>先做出作业初步安排的表如下:<br><img alt=\"\" width=\"541\" height=\"108\" src=\"https://image.chaiding.com/ruankao/35e306efcae49def993b5ff5c008cc21.jpg?x-oss-process=style/ruankaodaren\"><br>显然,将作业B和D分别安排在第1、2周可使总人数需求最少(最多需要15人)。如果将作业B安排在第1周,将作业D安排在第2周,则各周需要的人数为10、15、13、15。<br>如果将作业D安排在第1周,将作业B安排在第2周,则各周需要的人数为10、13、15、15。<br>后一种情况人数是逐渐增加的。前一种情况人数是波动的,人员的调度安排常会有些难度。<br>因此,本题较为合理(人力资源均衡分配)的安排如下:<br><img alt=\"\" width=\"554\" height=\"87\" src=\"https://image.chaiding.com/ruankao/8682c2ef25c634779990b778628d0345.jpg?x-oss-process=style/ruankaodaren\">","multi":0,"questionType":1,"answer":"D","chooseItem":["796239595015524353"],"itemList":[{"id":"796239594940026881","questionId":"796239594046640129","content":" 0,0,1,1,3","answer":0,"chooseValue":"A"},{"id":"796239594965192705","questionId":"796239594046640129","content":" 0,2,1,2,3","answer":0,"chooseValue":"B"},{"id":"796239594990358529","questionId":"796239594046640129","content":" 0,1,2,4,5","answer":0,"chooseValue":"C"},{"id":"796239595015524353","questionId":"796239594046640129","content":" 0,2,1,1,3","answer":1,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796239586077462529","title":"某工程项目包括8个作业A~H。各作业的紧前作业、所需天数、所需人数见下表:<br><img alt=\"\" width=\"572\" height=\"103\" src=\"https://image.chaiding.com/ruankao/8aa317bf8128d0c616bcd0ad070e5ea5.jpg?x-oss-process=style/ruankaodaren\"><br><br type=\"_moz\">该项目共有10人,各作业必须连续进行,至少需要(55)天才能完成。","analyze":"本题考查数学应用(进度计划网络图)能力。<br>该项目的进度计划网络图如下,各作业上标注了“作业名(天数,人数)\" ,<br><img alt=\"\" width=\"337\" height=\"161\" src=\"https://image.chaiding.com/ruankao/aa405c85535a91503f4b6491b58fc06b.jpg?x-oss-process=style/ruankaodaren\"><br>如果不考虑人数的限制,关键路径为C-F-G-H,该项目共需2+2+3+4=11天。<br>作业D必须在作业G前完成,但D不能与F并行(DF人数超过10),所以只能CD 并行2天,F推迟1天开始,导致该项目总天数延长1天。<br>作业B可以在作业C完成后立即开始,并与F并行2天。作业E将与作业G并行。<br>作业A可以与作业H并行。考虑到人数分配的平衡性,可以让AH同时开始。这样,整个项目最后1天只需1人,其他人可以转做别的项目。<br>各作业进度以及人数安排如下表:<br><img alt=\"\" width=\"559\" height=\"217\" src=\"https://image.chaiding.com/ruankao/50752cb13269fdd35f721c0b16bc0999.jpg?x-oss-process=style/ruankaodaren\">","multi":0,"questionType":1,"answer":"B","chooseItem":["796239586979237889"],"itemList":[{"id":"796239586962460673","questionId":"796239586077462529","content":" 11","answer":0,"chooseValue":"A"},{"id":"796239586979237889","questionId":"796239586077462529","content":" 12","answer":1,"chooseValue":"B"},{"id":"796239587000209409","questionId":"796239586077462529","content":" 13","answer":0,"chooseValue":"C"},{"id":"796239587021180929","questionId":"796239586077462529","content":" 14","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796239564707483649","title":"某厂准备生产甲、乙、丙三种产品,生产每件产品所需的A、B两种原料数量,能获得的利润,以及工厂拥有的原料数量如下表:<br><img alt=\"\" width=\"537\" height=\"110\" src=\"https://image.chaiding.com/ruankao/3a3f9046e93ff2a11523fc183926a667.jpg?x-oss-process=style/ruankaodaren\"><br>根据该表,只要安排好生产计划,就能获得最大利润(54)万元。","analyze":"本题考查数学应用(线性规划)能力。<br>设该厂计划生产甲x件,乙y件,丙z件,则有线性规划模型:<br>Max S=3x+4y+z<br>6x+5y+3z≤45<br>3x+5y+4z≤30<br>xyz≤0<br>线性规划问题的最优解必然在可行解区的顶点处达到。 <br>由于产品丙对利润的贡献最低,不妨先假设z=0。<br>此时,容易解得,在x=5,y=3时能获得最大利润27万元。 <br>当z=△>0时,<br>Max S=3x+4y+△<br>6x+5y≤45-3△<br>3x+5y≤30-4△<br>xy≥0<br>可以得到最优解:x=5+△/3,y=3-△,s=27-2△。<br>即z增加某个增量时,总利润将减少2倍的这些增量。 <br>因此,在x=5, y=3, z=0时能获得最大利润27万元。","multi":0,"questionType":1,"answer":"C","chooseItem":["796239565672173569"],"itemList":[{"id":"796239565626036225","questionId":"796239564707483649","content":" 25","answer":0,"chooseValue":"A"},{"id":"796239565651202049","questionId":"796239564707483649","content":" 26","answer":0,"chooseValue":"B"},{"id":"796239565672173569","questionId":"796239564707483649","content":" 27","answer":1,"chooseValue":"C"},{"id":"796239565697339393","questionId":"796239564707483649","content":" 28","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796239550094528513","title":"山区某乡的6个村之间有山路如下图所示,其中的数字标明了各条山路的长度(公里)。<br><img alt=\"\" width=\"250\" height=\"110\" src=\"https://image.chaiding.com/ruankao/9dcdc51e3580a872940219f3a2f30248.jpg?x-oss-process=style/ruankaodaren\"><br>乡政府决定沿山路架设电话线。为实现村村通电话,电话线总长至少为(59)公里。","analyze":"&nbsp;&nbsp;&nbsp; 本题需要在给定的图上寻找最小支撑树。<br>&nbsp;&nbsp;&nbsp; 图由若干个结点以及结点之间的连线组成,每条连线上标记了权数(本题为长度)。<br>&nbsp;&nbsp;&nbsp; 最小支撑树实际上是其中的一个子图,它包括所有的结点以及部分连线,这些连线需要连接所有的结点,但其总权数(长度)最小。<br>&nbsp;&nbsp;&nbsp; 从本题应用看,就是要在上述山路图中确定部分山路,使其能连接6个村,又能使总长度最短。<br>&nbsp;&nbsp;&nbsp; 最小支撑树的求解方法:先选择最短的一条线(如有多条,可以任选一条),它已经连接了2个点。从这2点出发,再找出能连接其他一个点的最短线(如有多条,可以任选一条)。这样,就已经用2条线连接了3个点。依此类推,逐步做下去,连线也逐步增多,连接的点也逐步增多,直到所有的点都连上为止。这样求出的若千条连线以及所有结点就组成了最小支撑树。<br>&nbsp;&nbsp;&nbsp; 本题求出的一种最小支撑树如下:<br><img alt=\"\" width=\"279\" height=\"130\" src=\"https://image.chaiding.com/ruankao/0b80eb517a8d3b0c440ed1755c56282e.jpg?x-oss-process=style/ruankaodaren\"><br>&nbsp;&nbsp;&nbsp; 其连线的总长度等于14公里,连接了6个村。<br>&nbsp;&nbsp;&nbsp; 在同一个图中,最小支撑树的方案可能有多个,但其连线的总长度是相等的。<br>&nbsp;&nbsp;&nbsp; 这是运筹学求解最优问题的普遍原则:最优值如果有,则必是唯一的,但达到最优值的方案可能不止一个。","multi":0,"questionType":1,"answer":"B","chooseItem":["796239551218601985"],"itemList":[{"id":"796239551193436161","questionId":"796239550094528513","content":" 11","answer":0,"chooseValue":"A"},{"id":"796239551218601985","questionId":"796239550094528513","content":" 14","answer":1,"chooseValue":"B"},{"id":"796239551243767809","questionId":"796239550094528513","content":" 18","answer":0,"chooseValue":"C"},{"id":"796239551273127937","questionId":"796239550094528513","content":" 33","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796239623159304193","title":"<p><strong>请作答第<span style=\"color: red\">1</span>个空。</strong></p>线性规划问题就是求出一组变量,在一组线性约束条件下,使某个线性目标函数达到极大(小)值。满足线性约束条件的变量区域称为可行解区。由于可行解区的边界均是线性的(平直的),属于单纯形,所以线性目标函数的极值只要存在,就一定会在可行解区边界的某个顶点达到。因此,在求解线性规划问题时,如果容易求出可行解区的所有顶点,那么只要在这些顶点处比较目标函数的值就可以了。<br>例如,线性规划问题:maxS=x+y (求S=x+y的最大值):2x+y&lt;=7,x+2y&lt;=8,x&gt;=0, y&gt;=0的可行解区是由四条直线2x+y=7;x+2y=8,x=0,y=0, 围成的,共有四个顶点。除了原点外,其他三个顶点是(53)。因此,该线性规划问题的解为(54)","analyze":"本题考查应用数学(线性规划)基础知识。<br>本题中的可行解区是由4条直线2x+y=7, x+2y=8, x=0, y=0围成的,可行解区的每个顶点都是由两条直线相交得到的。<br>2x+y=7与x=0的交点(0,7)不符合条件x+2y&lt;=8,因此(0,7)不是可行解区的顶点(落在可行解区外)》<br>x+2y=8与y=0的交点(8,0)不符合条件2x+y&lt;=7,因此(8,0)不是可行解区的顶点(落在可行解区外)。<br>2x+y=7与x+2y=8的交点(2,3),2x+y=7与y=0的交点(3.5,0),x+2y=8与x=0的交点(0, 4), x=0与y=0的交点(0, 0)都属于可行解区的顶点。在这4个顶点中 ;x=2,y=3可使目标函数S达到极大值5。","multi":0,"questionType":1,"answer":"D","chooseItem":["796239624082051073"],"itemList":[{"id":"796239624044302337","questionId":"796239623159304193","content":" (2,3), (0,7), (3.5,0)","answer":0,"chooseValue":"A"},{"id":"796239624056885249","questionId":"796239623159304193","content":" (2,3). (0,4), (8,0)","answer":0,"chooseValue":"B"},{"id":"796239624069468161","questionId":"796239623159304193","content":" (2,3),(0,7), (8,0)","answer":0,"chooseValue":"C"},{"id":"796239624082051073","questionId":"796239623159304193","content":" (2,3), (0,4), (3.5,0)","answer":1,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796239588971532289","title":"某批发站准备向甲、乙、丙、丁四家小商店供应5箱商品。批发站能取得的利润(单位:百元)与分配的箱数有关(见下表)。<br><img alt=\"\" width=\"560\" height=\"161\" src=\"https://image.chaiding.com/ruankao/515111756d4dee2ac8e6183b267e990e.jpg?x-oss-process=style/ruankaodaren\"><br>批发站为取得最大总利润,应分配__(57)__。","analyze":"本题考查数学应用(最优分配)能力。<br>该批发站如将5箱都分配给1家,则最大总利润为9百元(给乙5箱);<br>如分配给2家(1-4箱或2-3箱),则最大总利润分别为12或13百元;<br>如分配给3家(1-1-3箱),则最大总利润为15百元;<br>如分配给3家(1-2-2箱),则最大总利润为16百元(给甲、丙各2箱,给丁1箱); <br>如分配给4家(1-1-1-2箱),则最大总利润为16百元(给甲、乙、丁各1箱,给丙2箱)。<br>因此,该批发站有两种最优分配方案能取得最大利润16百元。这两种方案中,都需要给丙分配2箱。","multi":0,"questionType":1,"answer":"C","chooseItem":["796239589944610817"],"itemList":[{"id":"796239589898473473","questionId":"796239588971532289","content":" 给甲、丙各1箱","answer":0,"chooseValue":"A"},{"id":"796239589923639297","questionId":"796239588971532289","content":" 给乙2箱","answer":0,"chooseValue":"B"},{"id":"796239589944610817","questionId":"796239588971532289","content":" 给丙2箱","answer":1,"chooseValue":"C"},{"id":"796239589965582337","questionId":"796239588971532289","content":" 给丁2箱","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796239619808055297","title":"线性规划问题不可能()。","analyze":"本题考査应用数学基础知识。<br>线性规划问题的可行解区是一个凸集。如果线性规划问题存在两个最优解,则连接这两个解点的线段上所有的点都必然是可行解。<br>设该线性规划的目标函数为f(X)=C<sub>1</sub>X<sub>1</sub>+C<sub>2</sub>X<sub>2</sub>+…+C<sub>n</sub>X<sub>n</sub>=XC’,其中向量C=(C<sub>1</sub>,C<sub>2</sub>,…,C<sub>n</sub>),X=(X<sub>1</sub>,X<sub>2</sub>,…,X<sub>n</sub>)。如果f(Y<sub>1</sub>)=f(Y<sub>2</sub>)=M,则连接Y<sub>1</sub>与Y<sub>2</sub>的线段内的任一点λY<sub>1</sub>+μY<sub>2</sub>(λ,μ≥0,λ+μ=1),也有f(λY<sub>1</sub>+μY<sub>2</sub>)=λf(Y<sub>1</sub>)+μf(Y<sub>2</sub>)=M.也就是说,如果有两个不同的最优解(达到极值M),则连接这两个点的线段内所有的点也都是最优解(达到同样的极值M),即必然有无穷多个最优解。","multi":0,"questionType":1,"answer":"C","chooseItem":["796239620823076865"],"itemList":[{"id":"796239620793716737","questionId":"796239619808055297","content":" 没有最优解","answer":0,"chooseValue":"A"},{"id":"796239620810493953","questionId":"796239619808055297","content":" 只有一个最优解","answer":0,"chooseValue":"B"},{"id":"796239620823076865","questionId":"796239619808055297","content":" 只有2个最优解","answer":1,"chooseValue":"C"},{"id":"796239620844048385","questionId":"796239619808055297","content":" 有无穷多个最优解","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796239646047621121","title":"载重量限24吨的某架货运飞机准备选装若干箱金属原料运往某地。供选择的各箱原料的重量、运输利润如下表所示。<br><img alt=\"\" width=\"618\" height=\"81\" src=\"https://image.chaiding.com/ruankao/45c4549972040d6191d7035a4a2d7781.jpg?x-oss-process=style/ruankaodaren\"><br>经优化安排,该飞机本次运输可以获得的最大利润为(58)千元。","analyze":"在重量有限制的条件下,为取得最大的利润,显然应优先选择装载“利润重量比”大的货物。先列出每箱货物的利润/重量比如下:<br><img alt=\"\" width=\"614\" height=\"132\" src=\"https://image.chaiding.com/ruankao/92bc31bab67b4881f808ca3477837fc6.jpg?x-oss-process=style/ruankaodaren\"><br>根据利润重量比优先原则,应先装第4箱、第6箱货物。重量己达到16吨,离最大载重量还差8吨,只能再装第1箱,或第3箱,或第5箱。为取得最大利润,再装第1箱更好。<br>所以最优方案是装运箱号为1、4、6的三箱,总利润为3+4+3=10千元。","multi":0,"questionType":1,"answer":"B","chooseItem":["796239647108780033"],"itemList":[{"id":"796239647096197121","questionId":"796239646047621121","content":" 11","answer":0,"chooseValue":"A"},{"id":"796239647108780033","questionId":"796239646047621121","content":" 10","answer":1,"chooseValue":"B"},{"id":"796239647125557249","questionId":"796239646047621121","content":" 9","answer":0,"chooseValue":"C"},{"id":"796239647138140161","questionId":"796239646047621121","content":" 8","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796239629069078529","title":"线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性目标函数达到极值。满足这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是(56)。","analyze":"线性规划的可行解域是由一组线性约束条件形成的,从几何意义来说,就是由一些线性解面围割形成的区域。由于线性规划的目标函数也是线性的,因此,目标函数的等值域是线性区域。如果在可行解域中的某内点处目标函数达到最优值,则通过该内点的目标函数等值域与可行解域边界的交点也能达到最优解。所以,第一步的结论是:最优解必然会在可行解域的边界处达到。由于目标函数的各个等值域是平行的,而且目标函数的值将随着该等值域向某个方向平行移动而增加或减少(或不变)。如果最优解在可行解域边界某个非顶点处达到,则陣着等值域向某个方向移动,目标函数的值会增加或减少(与最优解矛盾)或没有变化(在此段边界上都达到最优解),从而仍会在可行解域的某个顶点处达到最优解。<br>既然可行解域是由一组线性约束条件所对的线性区域围成的,那么再增加一个约束条件时,要么缩小可行解域(新的约束条件分割了原来的可行解域),要么可行解域不变(新的约束条件与原来的可行解域不相交)。<br>如果可行解域是无界的,那么目标函数的等值域向某个方向平移(目标函数的值线性变化)时,可能出现无限增加或无限减少的情况,因此有可能没有最优解。当然,有时,即使可行解域是无界的,但仍然有最优解,但确实会有不存在最优解的情况。<br>由于线性规划的可行解域是凸域,区域内任取两点,则这两点的连线上所有的点都属于可行解域(线性函数围割而成的区域必是凸域)。如果线性规划问题在可行解域的某两个点上达到最优解(等值),则在这两点的连线上都能达到最优解(如果目标函数的等值域包括某两个点,则也会包括这两点连线上的所有点)。因此,线性规划问题的最优解要么是0个(没有),要么是唯一的(1个),要么有无穷个(只要有2个,就会有无穷个)。","multi":0,"questionType":1,"answer":"C","chooseItem":["796239630008602625"],"itemList":[{"id":"796239629962465281","questionId":"796239629069078529","content":" 线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到","answer":0,"chooseValue":"A"},{"id":"796239629987631105","questionId":"796239629069078529","content":" 线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变","answer":0,"chooseValue":"B"},{"id":"796239630008602625","questionId":"796239629069078529","content":" 线性规划问题如果存在可行解,则一定有最优解","answer":1,"chooseValue":"C"},{"id":"796239630029574145","questionId":"796239629069078529","content":" 线性规划问题的最优解只可能是0个、1个或无穷多个","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796239556088188929","title":"某书店准备向出版社订购一批本地旅游新版书,书的定价为每本30元,订购价为每本15元。如果该书在年底前尚未售出,则不得不以每本5元的价格退回给出版社。根据以往经验,按定价售出150本、160本、170本、180本的概率分别为0.1、0.2、0.4、0.3。为获取最大期望利润,该书店应订购此书(57)本。","analyze":"本题考查应用数学(决策论)知识。<br>根据题意,我们先对订购150本、151~159本、160本、161~169本、170本、171~ 179、180本的多种情况,以及按书定价售出150本、160本、170本、180本的多种可能,分别计算其利润值,填入下表(设0&lt;x&lt;10):<br><img alt=\"\" width=\"450\" height=\"151\" src=\"https://image.chaiding.com/ruankao/5f163b2cfd39cb30d33a4e2b7b1f3570.jpg?x-oss-process=style/ruankaodaren\"><br>再根据各种销售情况的概率计算出期望利润。从表中看出,在订购170本时能获得最大利润2450元。","multi":0,"questionType":1,"answer":"C","chooseItem":["796239556994158593"],"itemList":[{"id":"796239556968992769","questionId":"796239556088188929","content":" 160","answer":0,"chooseValue":"A"},{"id":"796239556981575681","questionId":"796239556088188929","content":" 161〜169","answer":0,"chooseValue":"B"},{"id":"796239556994158593","questionId":"796239556088188929","content":" 170","answer":1,"chooseValue":"C"},{"id":"796239557002547201","questionId":"796239556088188929","content":" 171 〜180","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796239561792442369","title":"某公司计划开发一种新产品,其开发前景有成功、较成功与失败三种可能情况。根据该公司的技术水平与市场分析,估计出现这三种情况的概率分别为40%、40%和20%。现有三种开发方案可供选择,每种方案在不同开发前景下估计获得的利润(单位:万元)如下表:<br><img alt=\"\" width=\"550\" height=\"111\" src=\"https://image.chaiding.com/ruankao/2f4c8922677b6d3a00d54a1f30cbd163.jpg?x-oss-process=style/ruankaodaren\"><br><br>为获得最大的期望利润,该公司应选择(60)。","analyze":"本题考查应用数学的基础知识。<br>根据题意,通过计算可以得到:<br>方案1的期望利润为20*40%+5*40%-10*20%=8 (万元)<br>方案2的期望利润为16*40%+8*40%-5*20%=8.6 (万元)<br>方案3的期望利润为12*40%+5*40%-2*20%=6.4 (万元)<br>为获得最大的期望利润,该公司应选择方案2。","multi":0,"questionType":1,"answer":"B","chooseItem":["796239562715189249"],"itemList":[{"id":"796239562698412033","questionId":"796239561792442369","content":" 方案1","answer":0,"chooseValue":"A"},{"id":"796239562715189249","questionId":"796239561792442369","content":" 方案2","answer":1,"chooseValue":"B"},{"id":"796239562727772161","questionId":"796239561792442369","content":" 方案3","answer":0,"chooseValue":"C"},{"id":"796239562740355073","questionId":"796239561792442369","content":" 方案1或方案2","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796239553219284993","title":"某IT企业计划对一批新招聘的技术人员进行岗前脱产培训,培训内容包括编程和测试两个专业,每个专业要求在基础知识、应用技术和实际训练三个方面都得到提高。根据培训大纲,每周的编程培训可同时获得基础知识3学分、应用技术7学分以及实际训练10学分;每周的测试培训可同时获得基础知识5学分、应用技术2学分以及实际训练7学分。企业要求这次岗前培训至少能完成基础知识70学分,应用技术86学分,实际训练185学分。以上说明如下表所示:<br><img alt=\"\" width=\"620\" height=\"104\" src=\"https://image.chaiding.com/ruankao/f947e32b83ee6f3e71e2c62fb78630b1.jpg?x-oss-process=style/ruankaodaren\"><br>那么这样的岗前培训至少需要(56)周时间才能满足企业的要求。","analyze":"设安排编程培训x周,测试培训y周,则可以建立本题的线性规划模型如下:<br>目标函数:x+y,求最小值<br>约束条件:3x+5y≥70<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7x+2y≥86<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10x+7y≥185<br>非负条件:x,y≥0<br>该线性规划问题的图解法如下:<br>在坐标系第一象限内(因为要求x,y≥0):<br>画直线L1: 3x+5y=7≤0(一定通过点(0,14)与(70/3,0))<br>所以,3x+5y≥70表示在直线L1之上的区域。<br>画直线L2: 7x+2y=86(―定通过点(0,43)与(86/7,0))<br>所以,7x+2y≥86表示在直线L2之上的区域。<br>画直线 L3: 10x+7y=185(―定通过点(0,185/7)与(20,18.5))<br>所以,10x+7y≥185表示在直线L3之上的区域。<br>上述三个约束条件以及变量非负条件组成的可行解区域见下图。<br><img alt=\"\" width=\"268\" height=\"252\" src=\"https://image.chaiding.com/ruankao/747f2a4671b14a5e53a99a59dc12f5ee.jpg?x-oss-process=style/ruankaodaren\"><br>根据线性规划方法,目标函数的最小值一定会在可行解区的顶点处到达。<br>因此,只要考察直线L1与L3的交点以及直线L2与L3的交点处目标函数的值。<br>L1与L3的交点满足:<br>3x+5y=70 <br>10x+7y=185<br>可以求出可行解区的一个顶点为(15,5),因此,x+y=20。<br>L2与L3的交点满足:<br>7x+2y=86 <br>10x+7y=185<br>可以求出可行解区的另一个顶点为(8,15),因此,x+y=23。<br>比较这两个顶点处的x+y值,就能知道本题的最优解就是:<br>x=15 (周),y=5 (周),x+y的最小值为20(周)。","multi":0,"questionType":1,"answer":"C","chooseItem":["796239554133643265"],"itemList":[{"id":"796239554108477441","questionId":"796239553219284993","content":" 15","answer":0,"chooseValue":"A"},{"id":"796239554121060353","questionId":"796239553219284993","content":" 18","answer":0,"chooseValue":"B"},{"id":"796239554133643265","questionId":"796239553219284993","content":" 20","answer":1,"chooseValue":"C"},{"id":"796239554150420481","questionId":"796239553219284993","content":" 23","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796239541659783169","title":"下面的网络图表示从城市A到城市B运煤的各种路线。各线段上的数字表示该线段运煤所需的费用(百元/车)。城市A有三个装货点,城市B有三个卸货点,各点旁标注的数字表示装/卸煤所需的费用(百元/车)。根据该图,从城市A的一个装卸点经过一条路线到城市B的一个卸货点所需的装、运、卸总费用至少为(56)(百元/车)。<br><img alt=\"\" width=\"443\" height=\"257\" src=\"https://image.chaiding.com/ruankao/3718f0df010090e83eea7ef6482ff95b.jpg?x-oss-process=style/ruankaodaren\">","analyze":"本题考査数学应用(最优路径)能力。<br>从A线出发经过中间5点可以到达B线。首先,很容易计算并标注各条路线从第5点到达B线并卸货的最少费用,可将其标注在相应的点旁。据此就容易计算并标注从第4点到达B线并卸货的最少费用,并将其标注在相应的点旁,依次类推。<br><img alt=\"\" width=\"391\" height=\"199\" src=\"https://image.chaiding.com/ruankao/e4b94541e7d483579e633d6a4c5b4e29.jpg?x-oss-process=style/ruankaodaren\"><br>从A的下端出发,向上、上、下、上、上、下到达B的中间点,总费用=3+(2+2+3+2+2+3) + 2=19 (百元/车)最少。","multi":0,"questionType":1,"answer":"A","chooseItem":["796239542553169921"],"itemList":[{"id":"796239542553169921","questionId":"796239541659783169","content":" 19","answer":1,"chooseValue":"A"},{"id":"796239542578335745","questionId":"796239541659783169","content":" 20","answer":0,"chooseValue":"B"},{"id":"796239542599307265","questionId":"796239541659783169","content":" 21","answer":0,"chooseValue":"C"},{"id":"796239542628667393","questionId":"796239541659783169","content":" 22","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796235170289045505","title":"加工某种零件需要依次经过毛坯、机加工、热处理和检验四道工序。各道工序有多种方案可选,对应不同的费用。下图表明了四道工序各种可选方案(连线)的衔接关系,线旁的数字表示该工序加工一个零件所需的费用(单位:元)。从该图可以推算出,加工一个零件的总费用至少需要( )元。<br><img width=\"386\" height=\"280\" alt=\"\" src=\"https://image.chaiding.com/ruankao/3e48161b0e6bbc8cd56d1275d11b25d6.jpg?x-oss-process=style/ruankaodaren\">","analyze":"本题考查应用数学(运筹学—最短路径)基础知识。<br>用倒推方法计算如下:<br>G-I需要20元,H-I需要10元。<br>D-I最少需要60元,E-I最少需要40元(EGI),F-I最少需要60元。<br>B-I最少需要80元(BEGI), C-I最少需要100元。<br>A-I最少需要130元(ABEGI)。","multi":0,"questionType":1,"answer":"B","chooseItem":["796235171337621505"],"itemList":[{"id":"796235171312455681","questionId":"796235170289045505","content":" 120","answer":0,"chooseValue":"A"},{"id":"796235171337621505","questionId":"796235170289045505","content":" 130","answer":1,"chooseValue":"B"},{"id":"796235171362787329","questionId":"796235170289045505","content":" 140","answer":0,"chooseValue":"C"},{"id":"796235171387953153","questionId":"796235170289045505","content":" 150","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796233958546231297","title":"各种线性规划模型都可以将其标准化。线性规划模型标准形式的特点不包括()。","analyze":"本题考查线性规划相关知识。<br> 线性规划的标准型(standard form of linearprogramrmng)是线性规划模型的标准形式。其主要特征为:<br> (1)目标函数为极大化类型;<br> (2)所有的约束条件都是等式;<br> (3)所有约束方程右端的常数都是非负的,C选项描述不够准确;<br> (4)所有决策变量都是非负的。","multi":0,"questionType":1,"answer":"C","chooseItem":["796233959582224385"],"itemList":[{"id":"796233959548669953","questionId":"796233958546231297","content":" 目标函数达到最大化(或最小化)","answer":0,"chooseValue":"A"},{"id":"796233959561252865","questionId":"796233958546231297","content":" 约束条件都是线性等式","answer":0,"chooseValue":"B"},{"id":"796233959582224385","questionId":"796233958546231297","content":" 约束条件中的常数系数均为非负","answer":1,"chooseValue":"C"},{"id":"796233959599001601","questionId":"796233958546231297","content":" 所有的决策变量均为非负","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796234921835253761","title":"<p><strong>请作答第<span style=\"color: red\">1</span>个空。</strong></p>某厂拥有三种资源A、B、C,生产甲、乙两种产品。生产每吨产品需要消耗的资源、可以获得的利润见下表。目前,该厂拥有资源A、资源B和资源C分別为12吨、7吨和12吨。根据上述说明,适当安排甲、乙两种产品的生产量,就能获得最大总利润(53)。如果生产计划只受资源A和C的约束,资源B很容易从市场上以每吨0.5百万元购得,则该厂宜再购买(54)资源B,以获得最大的总利润。<br><img alt=\"\" src=\"https://image.chaiding.com/ruankao/39b86dfae6ac2a20d7e7756d375fa17c.jpg?x-oss-process=style/ruankaodaren\" height=\"169\" width=\"499\">","analyze":"本题考查应用数学(运筹学-线性规划)基础知识。<br>设产品甲生产x吨,产品乙生产y吨,则线性规划模型为:<br><img width=\"405\" height=\"170\" alt=\"\" src=\"https://image.chaiding.com/ruankao/3109888c80594311c99d3b169d59619c.jpg?x-oss-process=style/ruankaodaren\"><br>可行解区为左下的五边形,其顶点为:(0,0),(6,0),(5,2),(2,5),(0,6)。 <br>显然,在顶点(5,2)处目标函数S达到最大值19。即产品甲生产5吨,产品乙生生产2吨,可以取得最大总利润19百万元。<br>如果资源B没有约束,可以外购,设新购n吨,则需要多花费0.5n百万元,则线性规划模型修改为:<br>求maxS=3x+2y-0.5n <br>约束条件:2x+y≤12&nbsp;<br>x+y≤7+n <br>x+2y≤12 <br>x,y,n≥0<br>从上图看出,当n≥1时,直线x+y=7+n,对形成可行解区不起作用。<br>此时,可行解区四边形顶点为(0,0),(6,0),(4,4),(0,6)。<br>只有当x=y=4时S取得最大值,maxS=max20-0.5n}。只有当n=1时取得最大值19.5。 <br>当0≤n≤1时,可行解区五边形的顶点为:<br>(0,0),(6,0),(5-n,2+2n),(2+2n,5-n),(0,6)。<br>maxS=max{-0.5n,18-0.5n,19+0.5n,16+3.5n,12-0.5n}(0≤n≤1),只有当n=1时S取得最大值19.5。<br>因此,在资源B无约束条件下,为取得最大总利润,应增购1吨资源B。","multi":0,"questionType":1,"answer":"C","chooseItem":["796234922812526593"],"itemList":[{"id":"796234922762194945","questionId":"796234921835253761","content":" 16百万元","answer":0,"chooseValue":"A"},{"id":"796234922791555073","questionId":"796234921835253761","content":" 18百万元","answer":0,"chooseValue":"B"},{"id":"796234922812526593","questionId":"796234921835253761","content":" 19百万元","answer":1,"chooseValue":"C"},{"id":"796234922837692417","questionId":"796234921835253761","content":" 20百万元","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796234924809015297","title":"<p><strong>请作答第<span style=\"color: red\">2</span>个空。</strong></p>某厂拥有三种资源A、B、C,生产甲、乙两种产品。生产每吨产品需要消耗的资源、可以获得的利润见下表。目前,该厂拥有资源A、资源B和资源C分別为12吨、7吨和12吨。根据上述说明,适当安排甲、乙两种产品的生产量,就能获得最大总利润(53)。如果生产计划只受资源A和C的约束,资源B很容易从市场上以每吨0.5百万元购得,则该厂宜再购买(54)资源B,以获得最大的总利润。<br><img alt=\"\" src=\"https://image.chaiding.com/ruankao/191a2f23196a27e77c637c4c90fadca1.jpg?x-oss-process=style/ruankaodaren\" height=\"169\" width=\"499\">","analyze":"本题考查应用数学(运筹学-线性规划)基础知识。<br>设产品甲生产x吨,产品乙生产y吨,则线性规划模型为:<br><img width=\"405\" height=\"170\" alt=\"\" src=\"https://image.chaiding.com/ruankao/2e6149b1fc7d7676083c60b56cd57440.jpg?x-oss-process=style/ruankaodaren\"><br>可行解区为左下的五边形,其顶点为:(0,0),(6,0),(5,2),(2,5),(0,6)。 <br>显然,在顶点(5,2)处目标函数S达到最大值19。即产品甲生产5吨,产品乙生生产2吨,可以取得最大总利润19百万元。<br>如果资源B没有约束,可以外购,设新购n吨,则需要多花费0.5n百万元,则线性规划模型修改为:<br>求maxS=3x+2y-0.5n <br>约束条件:2x+y≤12 <br>x+y≤7+n <br>x+2y≤12 <br>x,y,n≥0<br>从上图看出,当n≥1时,直线x+y=7+n,对形成可行解区不起作用。<br>此时,可行解区四边形顶点为(0,0),(6,0),(4,4),(0,6)。<br>只有当x=y=4时S取得最大值,maxS=max20-0.5n}。只有当n=1时取得最大值19.5。 <br>当0≤n≤1时,可行解区五边形的顶点为:<br>(0,0),(6,0),(5-n,2+2n),(2+2n,5-n),(0,6)。<br>maxS=max{-0.5n,18-0.5n,19+0.5n,16+3.5n,12-0.5n}(0≤n≤1),只有当n=1时S取得最大值19.5。<br>因此,在资源B无约束条件下,为取得最大总利润,应增购1吨资源B。","multi":0,"questionType":1,"answer":"A","chooseItem":["796234925853396993"],"itemList":[{"id":"796234925853396993","questionId":"796234924809015297","content":" 1吨","answer":1,"chooseValue":"A"},{"id":"796234925878562817","questionId":"796234924809015297","content":" 2吨","answer":0,"chooseValue":"B"},{"id":"796234925899534337","questionId":"796234924809015297","content":" 3吨","answer":0,"chooseValue":"C"},{"id":"796234925924700161","questionId":"796234924809015297","content":" 4吨","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796235411222450177","title":"某地区仅有甲、乙两个企业为销售同种电子产品竞争市场份额。甲企业有三种策略A、B、C,乙企业也有三种策略Ⅰ、Ⅱ、Ⅲ。两企业分别独立地选择各种策略时,预计甲企业将增加的市场份额(百分点)见下表(负值表示乙企业将增加的市场份额)。若两企业都采纳稳妥的保守思想(从最坏处着想,争取最好的结果),则(57)。<br><img alt=\"\" width=\"500\" height=\"96\" src=\"https://image.chaiding.com/ruankao/b798a617f386d2e0ff3ac260b811bf4d.jpg?x-oss-process=style/ruankaodaren\">","analyze":"本题考查应用数学基础知识(运筹一对策)。<br>甲企业若选择策略A,则最差情况会失去市场1个百分点;<br>甲企业若选择策略B,则最差情况会失去市场5个百分点;<br>甲企业若选择策略C,则最差情况市场份额没有变化,<br>因此甲企业决定选择策略C。<br>乙企业若选择策略Ⅰ,则最差情况会失去市场12个百分点;<br>乙企业若选择策略Ⅱ,则最差情况会失去市场10个百分点;<br>乙企业若选择策略Ⅲ,则最差情况会失去市场5个百分点,<br>因此乙企业决定选择策略Ⅲ。","multi":0,"questionType":1,"answer":"D","chooseItem":["796235412245860353"],"itemList":[{"id":"796235412149391361","questionId":"796235411222450177","content":" 甲选择策略B,乙选择策略Ⅲ","answer":0,"chooseValue":"A"},{"id":"796235412182945793","questionId":"796235411222450177","content":" 甲选择策略A,乙选择策略Ⅱ","answer":0,"chooseValue":"B"},{"id":"796235412216500225","questionId":"796235411222450177","content":" 甲选择策略B,乙选择策略Ⅱ","answer":0,"chooseValue":"C"},{"id":"796235412245860353","questionId":"796235411222450177","content":" 甲选择策略C,乙选择策略Ⅲ","answer":1,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796235414380761089","title":"某工厂每年需要铁矿原料100万吨,切假设全年对这种原料的消耗是均匀的。为了减少库存费用,准备平均分多批进货。库存费按平均年库存量(每次进货量的一半)以每万吨500元计算。由于每次进货需要额外支出订单费1000元,所以每次进货次数也不能太多。为节省库存费和订货费总支出,最经济的办法是(58)。","analyze":"本题考查应用数学基础知识(运筹-库存)。<br>设每次进货x万吨,则平均库存量为x/2万吨,年库存费=500x/2=250x元,<br>年订货次数=100/x,年订货费=1000*100/x=100000/x元。<br>总支出y=250x+100000/x元。<br>通过求导数分析极值知,当x=20时,Y取得最小值。","multi":0,"questionType":1,"answer":"C","chooseItem":["796235415328673793"],"itemList":[{"id":"796235415303507969","questionId":"796235414380761089","content":" 每年进货2次,每次进货50万吨","answer":0,"chooseValue":"A"},{"id":"796235415316090881","questionId":"796235414380761089","content":" 每年进货4次,每次进货25万吨","answer":0,"chooseValue":"B"},{"id":"796235415328673793","questionId":"796235414380761089","content":" 每年进货5次,每次进货20万吨","answer":1,"chooseValue":"C"},{"id":"796235415341256705","questionId":"796235414380761089","content":" 每年进货10次,每次进货10万吨","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796235404670947329","title":"<p><strong>请作答第<span style=\"color: red\">1</span>个空。</strong></p>某工程包括A、B、C、D、E、F六个作业,分别需要5、7、3、4、15、12天。A必须在C、D开始之前完成,B、D必须在E开始之前完成,C必须在F开始之前完成,F不能在B、D完成之前开始。该工程的工期至少需要(55)天。若作业E缩短4天,则整个工期可以缩短(56)天。","analyze":"本题考查应用数学基础知识(运筹一网络计划图)。<br>根据题意画出网络计划图如下:<br><img alt=\"\" width=\"489\" height=\"165\" src=\"https://image.chaiding.com/ruankao/b19abf0b1fc869f2f40057e6c13538ee.jpg?x-oss-process=style/ruankaodaren\"><br>关键路径(最长工期路径)为ADE,工期为5+4+15=24天。时间安排如下图:<br><img alt=\"\" width=\"463\" height=\"121\" src=\"https://image.chaiding.com/ruankao/b6ae4c748f989288bd4e6603b5725c35.jpg?x-oss-process=style/ruankaodaren\"><br>作业B可以在前9天内安排7天进行;作业C和F可以在第5到24天内依次安排,但作业F必须安排在第9天以后。如果作业E缩短4天,变成E11,则关键路径变成ADF,工期变成21天,缩短3天。","multi":0,"questionType":1,"answer":"C","chooseItem":["796235405690163201"],"itemList":[{"id":"796235405618860033","questionId":"796235404670947329","content":" 21","answer":0,"chooseValue":"A"},{"id":"796235405652414465","questionId":"796235404670947329","content":" 22","answer":0,"chooseValue":"B"},{"id":"796235405690163201","questionId":"796235404670947329","content":" 24","answer":1,"chooseValue":"C"},{"id":"796235405723717633","questionId":"796235404670947329","content":" 46","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796235408156413953","title":"<p><strong>请作答第<span style=\"color: red\">2</span>个空。</strong></p>某工程包括A、B、C、D、E、F六个作业,分别需要5、7、3、4、15、12天。A必须在C、D开始之前完成,B、D必须在E开始之前完成,C必须在F开始之前完成,F不能在B、D完成之前开始。该工程的工期至少需要(55)天。若作业E缩短4天,则整个工期可以缩短(56)天。","analyze":"本题考查应用数学基础知识(运筹一网络计划图)。<br>根据题意画出网络计划图如下:<br><img alt=\"\" width=\"489\" height=\"165\" src=\"https://image.chaiding.com/ruankao/aad0867cd1ceb754aa1a231d0b438ac2.jpg?x-oss-process=style/ruankaodaren\"><br>关键路径(最长工期路径)为ADE,工期为5+4+15=24天。时间安排如下图:<br><img alt=\"\" width=\"463\" height=\"121\" src=\"https://image.chaiding.com/ruankao/1b425113c020dad5c229d2389e00a4a0.jpg?x-oss-process=style/ruankaodaren\"><br>作业B可以在前9天内安排7天进行;作业C和F可以在第5到24天内依次安排,但作业F必须安排在第9天以后。如果作业E缩短4天,变成E11,则关键路径变成ADF,工期变成21天,缩短3天。","multi":0,"questionType":1,"answer":"C","chooseItem":["796235409225961473"],"itemList":[{"id":"796235409167241217","questionId":"796235408156413953","content":" 1","answer":0,"chooseValue":"A"},{"id":"796235409196601345","questionId":"796235408156413953","content":" 2","answer":0,"chooseValue":"B"},{"id":"796235409225961473","questionId":"796235408156413953","content":" 3","answer":1,"chooseValue":"C"},{"id":"796235409259515905","questionId":"796235408156413953","content":" 4","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796235163813040129","title":"<p><strong>请作答第<span style=\"color: red\">1</span>个空。</strong></p>某工程有七个作业A~G,按计划,完成各作业所需的时间以及作业之间的衔接关系见下表:<br><img width=\"618\" height=\"76\" alt=\"\" src=\"https://image.chaiding.com/ruankao/d3b25e31a14a1be8170e4c5a0ab566e1.jpg?x-oss-process=style/ruankaodaren\"><br>按照上述计划,该工程的总工期预计为(54)周。<br>在工程实施了10周后,经理对进度进行了检查,结果是:作业A和B已经完成,作业D完成了30% ,作业E完成了25% ,其他作业都还没有开始。<br>如果随后完全按原计划实施,则总工期将(55)完成。","analyze":"本题考查应用数学(运筹学-网络计划图)基础知识。<br>根据题意,绘制该工程的网络计划图如下:<br><img width=\"543\" height=\"138\" alt=\"\" src=\"https://image.chaiding.com/ruankao/9d0ac00b373cefd256e81a93c23b50cf.jpg?x-oss-process=style/ruankaodaren\"><br>因此,关键路径为B-D-G,预计总工期=6+10+4=20周。 <br>还可以画出甘特图如下:<br><img width=\"449\" height=\"177\" alt=\"\" src=\"https://image.chaiding.com/ruankao/3f78e1e4eea4f0889ad438911eaab3fa.jpg?x-oss-process=style/ruankaodaren\"><br>若按照原计划,该工程开始10周后,作业A和B必须完成,作业C将完成4/5=80% (4周工作量),作业D必须完成4/10=40% (4周工作量),作业E将完成4/8=50% (4周工作量)。<br>在工程开始10周后实际进行检查时,作业D只完成了30% (3周的工作量)因此作业D不得不推迟1周完成。B-D-G路径需要21周完成。<br>由于检查时,作业C尚未开始,所以它推迟了4周。不过,作业C和F还可以在前18周内完成,没有影响总工期。<br>由于检查时,作业E只完成了25% (2周工作量),相当于它推迟了2周。不过,它还可以在前16周完成,并不影响总工期。<br>综合看,如果随后的时间内完全按原计划实施,则该工程将推迟1周完成。","multi":0,"questionType":1,"answer":"A","chooseItem":["796235164735787009"],"itemList":[{"id":"796235164735787009","questionId":"796235163813040129","content":" 20","answer":1,"chooseValue":"A"},{"id":"796235164756758529","questionId":"796235163813040129","content":" 25","answer":0,"chooseValue":"B"},{"id":"796235164773535745","questionId":"796235163813040129","content":" 33","answer":0,"chooseValue":"C"},{"id":"796235164790312961","questionId":"796235163813040129","content":" 41","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796235167030071297","title":"<p><strong>请作答第<span style=\"color: red\">2</span>个空。</strong></p>某工程有七个作业A~G,按计划,完成各作业所需的时间以及作业之间的衔接关系见下表:<br><img width=\"618\" height=\"76\" alt=\"\" src=\"https://image.chaiding.com/ruankao/a716c18a6411cc0ac29b33a5fd4ae72a.jpg?x-oss-process=style/ruankaodaren\"><br>按照上述计划,该工程的总工期预计为(54)周。<br>在工程实施了10周后,经理对进度进行了检查,结果是:作业A和B已经完成,作业D完成了30% ,作业E完成了25% ,其他作业都还没有开始。<br>如果随后完全按原计划实施,则总工期将(55)完成。","analyze":"本题考查应用数学(运筹学-网络计划图)基础知识。<br>根据题意,绘制该工程的网络计划图如下:<br><img width=\"545\" height=\"138\" alt=\"\" src=\"https://image.chaiding.com/ruankao/6921d27ac0bb758d14afb0a912e4eee4.jpg?x-oss-process=style/ruankaodaren\"><br>因此,关键路径为B-D-G,预计总工期=6+10+4=20周。 <br>还可以画出甘特图如下:<br><img width=\"450\" height=\"178\" alt=\"\" src=\"https://image.chaiding.com/ruankao/3ff8310e7f690eb791dac8176c921c54.jpg?x-oss-process=style/ruankaodaren\"><br>若按照原计划,该工程开始10周后,作业A和B必须完成,作业C将完成4/5=80% (4周工作量),作业D必须完成4/10=40% (4周工作量),作业E将完成4/8=50% (4周工作量)。<br>在工程开始10周后实际进行检查时,作业D只完成了30% (3周的工作量)因此作业D不得不推迟1周完成。B-D-G路径需要21周完成。<br>由于检查时,作业C尚未开始,所以它推迟了4周。不过,作业C和F还可以在前18周内完成,没有影响总工期。<br>由于检查时,作业E只完成了25% (2周工作量),相当于它推迟了2周。不过,它还可以在前16周完成,并不影响总工期。<br>综合看,如果随后的时间内完全按原计划实施,则该工程将推迟1周完成。","multi":0,"questionType":1,"answer":"B","chooseItem":["796235168032509953"],"itemList":[{"id":"796235168011538433","questionId":"796235167030071297","content":" 提前1周","answer":0,"chooseValue":"A"},{"id":"796235168032509953","questionId":"796235167030071297","content":" 推迟1周","answer":1,"chooseValue":"B"},{"id":"796235168049287169","questionId":"796235167030071297","content":" 推迟2周","answer":0,"chooseValue":"C"},{"id":"796235168070258689","questionId":"796235167030071297","content":" 推迟3周","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796234451674746881","title":"某运输网络图(见下图)有A~E五个结点,结点之间标有运输方向箭线,每条箭线旁标有两个数字,前一个是单位流量的运输费用,后一个是该箭线所允许的单位时间内的流量上限。从结点A到E可以有多种分配运输量的方案。如果每次都选择最小费用的路径来分配最大流量,则可以用最小总费用获得最大总流量的最优运输方案。该最优运输方案中,所需总费用和达到的总流量分别为(56)。<br> <img src=\"https://image.chaiding.com/ruankao/14d2bddfbf60f6e6e4d7abfd550fecd2.jpg?x-oss-process=style/ruankaodaren\" alt=\"\" width=\"430\" height=\"114\" title=\"\" align=\"\">","analyze":"本题考查应用数学-运筹学-网络图的基础知识。<br> 从原图中的运输费用来看,从A到E的路径ACBE上单位流量的总费用最低,为1+2+1=4,最多可以分配流量min{8,5,7}=5。除去流量5后得到如下图:<br> <img width=\"578\" height=\"113\" src=\"https://image.chaiding.com/ruankao/3a4ae0c3f1bab650aa1919b6eddf18fd.jpg?x-oss-process=style/ruankaodaren\" alt=\"\"><br> 从该图中的运输费用来看,从A到E的路径ABE上单位流量的总费用最低,为4+1=5, 最多可以分配流量min{10,2}=2。除去流量2后得到如下图:<br> <img width=\"576\" height=\"101\" src=\"https://image.chaiding.com/ruankao/bff489961a229afa0754abf83ccf8f51.jpg?x-oss-process=style/ruankaodaren\" alt=\"\"><br> 从该图中的运输费用来看,从A到E的路径ACDE上单位流量的总费用最低,为1+3+2=6,最多可以分配流量min{3,10,4}=3。除去流量3后得到如下图:<br> <img width=\"581\" height=\"107\" src=\"https://image.chaiding.com/ruankao/74fa580b07e4fa4501a0e2a10a92252d.jpg?x-oss-process=style/ruankaodaren\" alt=\"\"><br> 从该图看,从A到E只有路径ABDE,单位流量的总费用=4+6+2=12,最多可以分配流量min{8,2,1}=1。<br> 上述运输方案,总流量=5+2+3+1=11,总费用=5X4+2X5+3X6+1X12=60。","multi":0,"questionType":1,"answer":"C","chooseItem":["796234452752683009"],"itemList":[{"id":"796234452681379841","questionId":"796234451674746881","content":" 4,5","answer":0,"chooseValue":"A"},{"id":"796234452714934273","questionId":"796234451674746881","content":" 12,16","answer":0,"chooseValue":"B"},{"id":"796234452752683009","questionId":"796234451674746881","content":" 60,11","answer":1,"chooseValue":"C"},{"id":"796234452790431745","questionId":"796234451674746881","content":" 71,11","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796234442308866049","title":"<p><strong>请作答第<span style=\"color: red\">1</span>个空。</strong></p>某项目有8个作业A~H,每个作业的紧前作业、所需天数和所需人数见下表。由于整个项目团队总共只有9人,各个作业都必须连续进行,中途不能停止,因此需要适当安排施工方案,使该项目能尽快在(53)内完工。在该方案中,作业A应安排在(54)内进行。<br> <img src=\"https://image.chaiding.com/ruankao/9004017545afea5e2e2e950c4b9b8749.jpg?x-oss-process=style/ruankaodaren\" alt=\"\" width=\"650\" height=\"109\" title=\"\" align=\"\">","analyze":"本题考查应用数学-运筹学-网络计划图的基础知识。<br> 根据题中各作业的紧前作业和所需天数,可绘制网络计划图如下:<br> <img src=\"https://image.chaiding.com/ruankao/a440e9f0430bfc1762350db0078b6528.jpg?x-oss-process=style/ruankaodaren\" alt=\"\" width=\"350\" height=\"110\" title=\"\" align=\"\"><br> 根据该图,如果不考虑人数限制,该项目的关键路径为C-E-F-H,需要2+2+3+3=10天。 <br> 先考虑安排关键路径上这几个作业顺序进行:第1~2天安排5人做作业C,第3~4天安排1人做作业E,第5~7天安排1人做作业F,第8~10天安排6人做作业H,图示如下:<br> <img width=\"766\" height=\"42\" src=\"https://image.chaiding.com/ruankao/699e6d6b091ce2ead075def5c9c31344.jpg?x-oss-process=style/ruankaodaren\" alt=\"\"><br> 由于作业B必须在F之前进行,需要8人做1天,只能安排在第3或第4天进行。<br> 由于作业D和G必须在H之前进行,作业D需要4人做2天,安排在第1~2天为好。而作业G需要7人做2天。将作业B安排在第3天,将作业G安排在第4~5天为好。 <br> 作业A虽然可以在全程安排,但由于需要7人,所以安排在第6~8天为好。然而第8天作业H已暂时安排6人,这样会引发第8天人数(6+7)超出9人的限制。最好的解决办法是将作业H推迟1天。从而,在每天人数限制9人的条件下,项目最快能在11天完成, 实施方案图示如下:<br> <img width=\"768\" height=\"122\" src=\"https://image.chaiding.com/ruankao/2b4d0051b7bf89f97394a040f0b74897.jpg?x-oss-process=style/ruankaodaren\" alt=\"\"><br></br>\n","multi":0,"questionType":1,"answer":"B","chooseItem":["796234443365830657"],"itemList":[{"id":"796234443319693313","questionId":"796234442308866049","content":" 10天","answer":0,"chooseValue":"A"},{"id":"796234443365830657","questionId":"796234442308866049","content":" 11天","answer":1,"chooseValue":"B"},{"id":"796234443399385089","questionId":"796234442308866049","content":" 12天","answer":0,"chooseValue":"C"},{"id":"796234443420356609","questionId":"796234442308866049","content":" 13天","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796234445496537089","title":"<p><strong>请作答第<span style=\"color: red\">2</span>个空。</strong></p>某项目有8个作业A~H,每个作业的紧前作业、所需天数和所需人数见下表。由于整个项目团队总共只有9人,各个作业都必须连续进行,中途不能停止,因此需要适当安排施工方案,使该项目能尽快在(53)内完工。在该方案中,作业A应安排在(54)内进行。<br> <img src=\"https://image.chaiding.com/ruankao/c684e42d5cf6677de83f911a794787d6.jpg?x-oss-process=style/ruankaodaren\" alt=\"\" width=\"650\" height=\"109\" title=\"\" align=\"\">","analyze":"本题考查应用数学-运筹学-网络计划图的基础知识。<br> 根据题中各作业的紧前作业和所需天数,可绘制网络计划图如下:<br> <img src=\"https://image.chaiding.com/ruankao/a440e9f0430bfc1762350db0078b6528.jpg?x-oss-process=style/ruankaodaren\" alt=\"\" width=\"350\" height=\"110\" title=\"\" align=\"\"><br> 根据该图,如果不考虑人数限制,该项目的关键路径为C-E-F-H,需要2+2+3+3=10天。 <br> 先考虑安排关键路径上这几个作业顺序进行:第1~2天安排5人做作业C,第3~4天安排1人做作业E,第5~7天安排1人做作业F,第8~10天安排6人做作业H,图示如下:<br> <img width=\"766\" height=\"42\" src=\"https://image.chaiding.com/ruankao/699e6d6b091ce2ead075def5c9c31344.jpg?x-oss-process=style/ruankaodaren\" alt=\"\"><br> 由于作业B必须在F之前进行,需要8人做1天,只能安排在第3或第4天进行。<br> 由于作业D和G必须在H之前进行,作业D需要4人做2天,安排在第1~2天为好。而作业G需要7人做2天。将作业B安排在第3天,将作业G安排在第4~5天为好。 <br> 作业A虽然可以在全程安排,但由于需要7人,所以安排在第6~8天为好。然而第8天作业H已暂时安排6人,这样会引发第8天人数(6+7)超出9人的限制。最好的解决办法是将作业H推迟1天。从而,在每天人数限制9人的条件下,项目最快能在11天完成, 实施方案图示如下:<br> <img width=\"768\" height=\"122\" src=\"https://image.chaiding.com/ruankao/2b4d0051b7bf89f97394a040f0b74897.jpg?x-oss-process=style/ruankaodaren\" alt=\"\"><br></br>\nps:由于A和G任务的顺序是可以换的,此题有两个答案C/D","multi":0,"questionType":1,"answer":"D","chooseItem":["796234446591250433"],"itemList":[{"id":"796234446503170049","questionId":"796234445496537089","content":" 第3-5天","answer":0,"chooseValue":"A"},{"id":"796234446532530177","questionId":"796234445496537089","content":" 第4-6天","answer":0,"chooseValue":"B"},{"id":"796234446561890305","questionId":"796234445496537089","content":" 第5-7天","answer":0,"chooseValue":"C"},{"id":"796234446591250433","questionId":"796234445496537089","content":" 第6-8天","answer":1,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796234689009438721","title":"<p><strong>请作答第<span style=\"color: red\">1</span>个空。</strong></p>某项目有A~H八个作业,各作业所需时间(单位:周)以及紧前作业如下表:<br> <img alt=\"\" src=\"https://image.chaiding.com/ruankao/31ee6863e8dc7a5bfc6ad1a4885cfb8a.jpg?x-oss-process=style/ruankaodaren\" width=\"646\" height=\"82\"><br> 该项目的工期为(54)周。如果作业C拖延3周完成,则该项目的工期(55)。","analyze":"<br> <img alt=\"\" src=\"https://image.chaiding.com/ruankao/c1350bf7cffd0e33392d7537a8c89438.jpg?x-oss-process=style/ruankaodaren\" width=\"646\" height=\"200\"><br>通过绘图找最长路径可知,关键路径为:ADFH,长度为13,所以项目的工期为13周。 当C拖延3周之后,关键路径变为:ACEH,长度为15,所以工期拖延2周。","multi":0,"questionType":1,"answer":"B","chooseItem":["796234689944768513"],"itemList":[{"id":"796234689932185601","questionId":"796234689009438721","content":" 12","answer":0,"chooseValue":"A"},{"id":"796234689944768513","questionId":"796234689009438721","content":" 13","answer":1,"chooseValue":"B"},{"id":"796234689957351425","questionId":"796234689009438721","content":" 14","answer":0,"chooseValue":"C"},{"id":"796234689965740033","questionId":"796234689009438721","content":" 15","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796234691987394561","title":"<p><strong>请作答第<span style=\"color: red\">2</span>个空。</strong></p>某项目有A~H八个作业,各作业所需时间(单位:周)以及紧前作业如下表:<br> <img alt=\"\" src=\"https://image.chaiding.com/ruankao/5b4dab2f971ac99d45b260dc70fdeaa6.jpg?x-oss-process=style/ruankaodaren\" width=\"646\" height=\"82\"><br> 该项目的工期为(54)周。如果作业C拖延3周完成,则该项目的工期(55)。","analyze":"<br> <img alt=\"\" src=\"https://image.chaiding.com/ruankao/c1350bf7cffd0e33392d7537a8c89438.jpg?x-oss-process=style/ruankaodaren\" width=\"646\" height=\"200\"><br>\n通过绘图找最长路径可知,关键路径为:ADFH,长度为13,所以项目的工期为13周。 当C拖延3周之后,关键路径变为:ACEH,长度为15,所以工期拖延2周。","multi":0,"questionType":1,"answer":"C","chooseItem":["796234692947890177"],"itemList":[{"id":"796234692897558529","questionId":"796234691987394561","content":" 不变","answer":0,"chooseValue":"A"},{"id":"796234692922724353","questionId":"796234691987394561","content":" 拖延1周","answer":0,"chooseValue":"B"},{"id":"796234692947890177","questionId":"796234691987394561","content":" 拖延2周","answer":1,"chooseValue":"C"},{"id":"796234692973056001","questionId":"796234691987394561","content":" 拖延3周","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796234934103592961","title":"<p><strong>请作答第<span style=\"color: red\">2</span>个空。</strong></p>某项目有A~H八个作业,各作业所需时间(单位:周)以及紧前作业如下表:<br><img alt=\"\" src=\"https://image.chaiding.com/ruankao/a305dfa7dae24ba1cbc3e96a36873439.jpg?x-oss-process=style/ruankaodaren\" height=\"97\" width=\"535\"><br>该项目的工期为(56)周。如果作业C拖延3周完成,则该项目的工期(57)。","analyze":"本题考查应用数学(运筹学-网络计划图)基础知识。<br>先根据题中给出的表绘制如下的网络计划图:<br><br><img width=\"441\" height=\"115\" alt=\"\" src=\"https://image.chaiding.com/ruankao/6713bad46a1070966751f94c2d6e5547.jpg?x-oss-process=style/ruankaodaren\"><br>关键路径为从起点到终点所需时间最长的路径:A-D-F-H,工期为1+5+6+1=13周。 <br>若作业C拖延3周完成,则关键路径为A-C-E-H,工期为1+6+7+1=15周,拖延2周。","multi":0,"questionType":1,"answer":"C","chooseItem":["796234935227666433"],"itemList":[{"id":"796234935135391745","questionId":"796234934103592961","content":" 不变","answer":0,"chooseValue":"A"},{"id":"796234935181529089","questionId":"796234934103592961","content":" 拖延1周","answer":0,"chooseValue":"B"},{"id":"796234935227666433","questionId":"796234934103592961","content":" 拖延2周","answer":1,"chooseValue":"C"},{"id":"796234935261220865","questionId":"796234934103592961","content":" 拖延3周","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796234930991419393","title":"<p><strong>请作答第<span style=\"color: red\">1</span>个空。</strong></p>某项目有A~H八个作业,各作业所需时间(单位:周)以及紧前作业如下表:<br><img src=\"https://image.chaiding.com/ruankao/42b818ddf08c7576741688fc0593fc7d.jpg?x-oss-process=style/ruankaodaren\" height=\"97\" width=\"100%\"><br>该项目的工期为(56)周。如果作业C拖延3周完成,则该项目的工期(57)。","analyze":"本题考查应用数学(运筹学-网络计划图)基础知识。<br>先根据题中给出的表绘制如下的网络计划图:<br><img width=\"441\" height=\"115\" alt=\"\" src=\"https://image.chaiding.com/ruankao/3def670731a6058e014d4677d1053161.jpg?x-oss-process=style/ruankaodaren\"><br>关键路径为从起点到终点所需时间最长的路径:A-D-F-H,工期为1+5+6+1=13周。 <br>若作业C拖延3周完成,则关键路径为A-C-E-H,工期为1+6+7+1=15周,拖延2周。","multi":0,"questionType":1,"answer":"B","chooseItem":["796234932010635265"],"itemList":[{"id":"796234931981275137","questionId":"796234930991419393","content":" 12","answer":0,"chooseValue":"A"},{"id":"796234932010635265","questionId":"796234930991419393","content":" 13","answer":1,"chooseValue":"B"},{"id":"796234932039995393","questionId":"796234930991419393","content":" 14","answer":0,"chooseValue":"C"},{"id":"796234932073549825","questionId":"796234930991419393","content":" 15","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796234458217861121","title":"根据历史数据和理论推导可知,某随机变量x的分布密度函数为f(x)=2x,(0&lt;x&lt;1)。这意味着,当Δx充分小时,随机变量x落在区间(x,x+ΔX)内的概率约等于f(x)Δx。为此,在电脑上可采用(58)来模拟该随机变量,其中,r1和r2为计算机产生的、均匀分布在(0,1)区间的两个伪随机数,且互相独立。","analyze":"本题考查应用数学-运筹学-随机模拟的基础知识。<br> 用计算机来模拟随机系统往往需要模拟实际的随机变量。根据历史数据或理论推导可以得到随机变量的分布密度函数,而根据分布密度函数设计计算机抽样方法,可用于模拟随机<br> 变量。<br> 本题中,若ΔX充分小,随机变量max(r1,r2)落在区间(x,x+ΔX)内的事件A,是事件A1、 A2和A3的并集。事件A1为r1落在区间(x,x+ΔX)内,而r2&lt;x;事件A2为r1&lt;x, 而r2落在区间(x,x+ΔX)内;事件A3为r1和r2都落在区间(X,X+ΔX)内。这三个事件互相没有交集。因此概率P(A)=P(A1)+P(A2)+P(A3)=ΔX*x+x*ΔX+ΔX*ΔX≈2xΔX=f(x)ΔX。因此,max(r1,r2)可以<br> 用来模拟随机变量X。<br> 定性地选择该题的正确答案也不难:(0,1)区间内的分布密度函数2x,意味着随着x的增大出现的概率也线性地增大。显然,对于min(r1,r2),出现较小的数值的概率更大些;r1*r2 (两个小于1的数相乘会变得更小)也会这样。对于随机变量(r1+r2)/2,出现中等大小数值的概率更大一些,出现较大的或较小值的概率会小一些,其分布密度函数会呈凸型。只有max(r1 ,r2),出现较大数值的概率更大些。","multi":0,"questionType":1,"answer":"A","chooseItem":["796234459161579521"],"itemList":[{"id":"796234459161579521","questionId":"796234458217861121","content":" max(r1,r2)","answer":1,"chooseValue":"A"},{"id":"796234459199328257","questionId":"796234458217861121","content":" min(r1,r2)","answer":0,"chooseValue":"B"},{"id":"796234459228688385","questionId":"796234458217861121","content":" r1*r2","answer":0,"chooseValue":"C"},{"id":"796234459249659905","questionId":"796234458217861121","content":" (r1+r2)/2","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796235173321527297","title":"根据历史统计情况,某超市某种面包的日销量为100、110、120、130、140个的概率相同,每个面包的进价为4元,销售价为5元,但如果当天没有卖完,剩余的面包次日将以每个3元处理。为取得最大利润,该超市每天应进货这种面包( )个。","analyze":"本题考查应用数学(运筹学-决策)基础知识。<br>这种面包各种进货情况和销售情况下,所得利润如下表:<br><img width=\"614\" height=\"183\" alt=\"\" src=\"https://image.chaiding.com/ruankao/c0c9a61a6759418645c878784c7ec871.jpg?x-oss-process=style/ruankaodaren\"><br>因此,每天进货120个面包时,能得到最大利润108元。","multi":0,"questionType":1,"answer":"B","chooseItem":["796235174470766593"],"itemList":[{"id":"796235174441406465","questionId":"796235173321527297","content":" 110","answer":0,"chooseValue":"A"},{"id":"796235174470766593","questionId":"796235173321527297","content":" 120","answer":1,"chooseValue":"B"},{"id":"796235174504321025","questionId":"796235173321527297","content":" 130","answer":0,"chooseValue":"C"},{"id":"796235174533681153","questionId":"796235173321527297","content":" 140","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796235401097400321","title":"用一辆载重量为10吨的卡车装运某仓库中的货物(不用考虑装车时货物的大小),这些货物单件的重量和运输利润如下表。适当选择装运一些货物各若干件,就能获得最大总利润(54)元。<br><img alt=\"\" width=\"514\" height=\"66\" src=\"https://image.chaiding.com/ruankao/a3eb3c4c4fc188fcfb6d38eb7a7bc3e2.jpg?x-oss-process=style/ruankaodaren\">","analyze":"本题考查应用数学(运筹一最优化分配)。<br>先计算各类货物的单位运输利润如下:<br><img alt=\"\" width=\"554\" height=\"91\" src=\"https://image.chaiding.com/ruankao/0e438b95ca43c637b89c06e423d1c6ee.jpg?x-oss-process=style/ruankaodaren\"><br>货物A重量为1吨,利润53元,用它可以代替所有利润/重量之比不超过53元的货物B、C、E、F。首先选择装运利润/重量之比最大的货物D,可以装2件,10吨卡车占了8吨,再选择货物A,可装2件。总共可获得利润2*216+2*53=538元。","multi":0,"questionType":1,"answer":"D","chooseItem":["796235402154364929"],"itemList":[{"id":"796235402049507329","questionId":"796235401097400321","content":" 530","answer":0,"chooseValue":"A"},{"id":"796235402083061761","questionId":"796235401097400321","content":" 534","answer":0,"chooseValue":"B"},{"id":"796235402120810497","questionId":"796235401097400321","content":" 536","answer":0,"chooseValue":"C"},{"id":"796235402154364929","questionId":"796235401097400321","content":" 538","answer":1,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796234439347687425","title":"线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是 (52)。","analyze":"本题考查应用数学-运筹学-线性规划的基础知识。<br> 线性规划问题的可行解区可能无界;如果增加一个线性约束条件,则可行解区可能缩小也可能不变;如果存在两个最优解,则连接这两点的线段内所有的点都是最优解,而线段两端延长线上可能会超出可行解区;如果最优解存在且唯一,则目标函数的极值一定会在某个顶点处达到,这就为方便计算开辟了道路。","multi":0,"questionType":1,"answer":"D","chooseItem":["796234440354320385"],"itemList":[{"id":"796234440262045697","questionId":"796234439347687425","content":" 可行解区一定是封闭的多边形或多面体","answer":0,"chooseValue":"A"},{"id":"796234440291405825","questionId":"796234439347687425","content":" 若增加一个线性约束条件,则可行解区可能会扩大","answer":0,"chooseValue":"B"},{"id":"796234440320765953","questionId":"796234439347687425","content":" 若存在两个最优解,则它们的所有线性组合都是最优解","answer":0,"chooseValue":"C"},{"id":"796234440354320385","questionId":"796234439347687425","content":" 若最优解存在且唯一,则可以从可行解区顶点处比较目标函数值来求解","answer":1,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796235157911654401","title":"线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是( )。","analyze":"本题考查应用数学(运筹学-线性规划)基础知识。<br>线性规划问题的可行解区可能不存在。例如:两个约束条件(不等式)矛盾,没有交集。可行解区可能无界。例如,X+Y&gt;1,X≥0,Y≥0。当可行解区无界时,可能仍存在最优解。例如:min S=X+2Y;X+Y&gt;1,X≥0,Y≥0。如果最优解存在,并且在可行解区的内点或边界(非顶点)内点达到,则目标函数的等值线(面、体)要么还可以在可行解区内移动,扩大和缩小目标函数的值;要么已经包含了某些顶点。","multi":0,"questionType":1,"answer":"D","chooseItem":["796235158863761409"],"itemList":[{"id":"796235158813429761","questionId":"796235157911654401","content":" 线性规划问题的可行解区一定存在","answer":0,"chooseValue":"A"},{"id":"796235158826012673","questionId":"796235157911654401","content":" 如果可行解区存在,则一定有界","answer":0,"chooseValue":"B"},{"id":"796235158842789889","questionId":"796235157911654401","content":" 如果可行解区存在但无界,则一定不存在最优解","answer":0,"chooseValue":"C"},{"id":"796235158863761409","questionId":"796235157911654401","content":" 如果最优解存在,则一定会在可行解区的某个顶点处达到","answer":1,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796235398144610305","title":"设三个煤场A1、A2、A3分别能供应煤7、12、11万吨,三个工厂B1、B2、B3分别需要煤10、10、10万吨,从各煤场到各工厂运煤的单价(百元/吨)见下表方框内的数字。只要选择最优的运输方案,总的运输成本就能降到(53)百万元。<br><img alt=\"\" width=\"547\" height=\"113\" src=\"https://image.chaiding.com/ruankao/44790c493c749180dac532ecc866b23e.jpg?x-oss-process=style/ruankaodaren\">","analyze":"本题考査应用数学基础知识(运筹一运输问题)。<br>先做出初始方案(第1、2列按最便宜运输,第3列再配齐,总运费61百万元)。<br><img alt=\"\" width=\"548\" height=\"168\" src=\"https://image.chaiding.com/ruankao/e464f7a843d2b678cc374d24931a359b.jpg?x-oss-process=style/ruankaodaren\"><br>再改进此方案(按第1行最便宜运输,调整其他项,总运费40百万元)。<br><img alt=\"\" width=\"551\" height=\"161\" src=\"https://image.chaiding.com/ruankao/b9ac058b2e4c74ca6a8394ebc56a325e.jpg?x-oss-process=style/ruankaodaren\"><br>各空格处若再增加运量,都不能再减少运费,因此最低总运费为40百万元。<br>初始方案可以不同,最优方案也可以不同,但最低运费一定相同。关键是对改进的方案经过各种试验已不能再调整来降低总运费了。","multi":0,"questionType":1,"answer":"B","chooseItem":["796235399079940097"],"itemList":[{"id":"796235399063162881","questionId":"796235398144610305","content":" 30","answer":0,"chooseValue":"A"},{"id":"796235399079940097","questionId":"796235398144610305","content":" 40","answer":1,"chooseValue":"B"},{"id":"796235399096717313","questionId":"796235398144610305","content":" 50","answer":0,"chooseValue":"C"},{"id":"796235399113494529","questionId":"796235398144610305","content":" 60","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796234686014705665","title":"设三个煤场A、B、C分别能供应煤12、14、10万吨,三个工厂X、Y、Z分别需要煤11、12、13万吨,从各煤场到各工厂运煤的单价(百元/吨)见下表方框内的数字。只要选择最优的运输方案,总的运输成本就能降到( )百万元。<br> <img width=\"550\" height=\"131\" alt=\"\" src=\"https://image.chaiding.com/ruankao/c28cf5f0845a94d0e75f42e0173e3b31.jpg?x-oss-process=style/ruankaodaren\" title=\"\" align=\"\">","analyze":"本题考查应用数学(运筹学一运输问题)基础知识。<br> 先按最低运费单价1和2(百元/吨)尽量多运,做出如下初始方案,总运费11X1+10X2+1X4+3X3+10X8=124百万元。<br> <img src=\"https://image.chaiding.com/ruankao/eeb2e1c4bc8d2c48387b5a2a538cd74f.jpg?x-oss-process=style/ruankaodaren\" alt=\"\" width=\"550\" height=\"169\" title=\"\" align=\"\"><br> 再改进此方案。按最高运费单价8百元/吨尽量少运,再调整其他项,得到如下方案,总运费11X1+1X4+13X3+10X3=84百万元。<br> <img src=\"https://image.chaiding.com/ruankao/6ac0eec98ef6fcc5eaaf960781239bd5.jpg?x-oss-process=style/ruankaodaren\" alt=\"\" width=\"550\" height=\"169\" title=\"\" align=\"\"><br> 现在,每个未运格若再增加运量,都将增加运费。<br> 例如,若AX格增加1吨运输(运费增加5百元),则其他格的运量需要做相应调整。<br> 可以有两种情况:(1)AX,AY,CY,CX分别增、减、增、减1吨运量,则运费变化为+5-1+6-3=+7(增加7百万元);(2)AX,AY,BY,BZ、CZ、CX分别增、减、增、减、增、减1吨运量,则运费变化为+5-1+4-3+8-3=+10(增加10百万元)。<br> 全是增加运费的。其余类推。因此最低总运费为84百万元。(实际解答时,许多明显不合理的途径不用计算就可以舍去)<br> 运输问题的初始方案可以不同,最优方案也可以不同,但最低运费一定相同。","multi":0,"questionType":1,"answer":"A","chooseItem":["796234686929063937"],"itemList":[{"id":"796234686929063937","questionId":"796234686014705665","content":" 83","answer":1,"chooseValue":"A"},{"id":"796234686954229761","questionId":"796234686014705665","content":" 91","answer":0,"chooseValue":"B"},{"id":"796234686983589889","questionId":"796234686014705665","content":" 113","answer":0,"chooseValue":"C"},{"id":"796234687012950017","questionId":"796234686014705665","content":" 153","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null},{"id":"796234928009269249","title":"设三个煤场A、B、C分别能供应煤12、14、10万吨,三个工厂X、Y、Z分别需要煤11、12、13万吨,从各煤场到各工厂运煤的单价(百元/吨)见下表方框内的数字。只要选择最优的运输方案,总的运输成本就能降到( )百万元。<br><img alt=\"\" src=\"https://image.chaiding.com/ruankao/81a8668ec4a84e1c0f58e7664eab4209.jpg?x-oss-process=style/ruankaodaren\" height=\"157\" width=\"573\">","analyze":"本题考查应用数学(运筹学-运输问题)基础知识。<br>先按最低运费单价1和2(百元/吨)尽量多运,做出如下初始方案,总运费12×1+11×2+3×3+10×7=113 百万元。<br><img width=\"535\" height=\"169\" alt=\"\" src=\"https://image.chaiding.com/ruankao/a3f43b11240091e9bec80370af1ca62d.jpg?x-oss-process=style/ruankaodaren\"><br>再改进此方案。按最高运费单价7百元/吨尽量少运,再调整其他项,得到如下方案, 总运费12×1+1×2+13×3+10×3=83 百万元。<br><img width=\"535\" height=\"181\" alt=\"\" src=\"https://image.chaiding.com/ruankao/48ea9d6eae5004a08f7a927aad005c2f.jpg?x-oss-process=style/ruankaodaren\"><br>现在,每个未运格若再增加运量,都将增加运费。<br>例如,若AX格增加1吨运输(运费增加5百万元),则其他格的运量需要做相应调整。可以有三种情况:(1)AX,AY,BY,BX分别增、减、增、减1吨运量,则运费变化为+5-1+4-2=+6(增加6百万元);(2)AX,AY,CY,CX分別增、减、增、减1吨运量,则运费变化为+5-1+6-3=+7(增加7百万元);(3)AX,AY,BY,BZ、CZ、CX分别增、减、增、减、增、减1吨运量,则运费变化为+5-1+4-3+7-3=+10(增加10百万元)。全部都是增加运费的。其余类推。因此最低总运费为83百万元。(实际解答时,许多明显不合理的途径不用计算就可以舍去。)<br>运输问题的初始方案可以不同,最优方案也可以不同,但最低运费一定相同。","multi":0,"questionType":1,"answer":"A","chooseItem":["796234928978153473"],"itemList":[{"id":"796234928978153473","questionId":"796234928009269249","content":" 83","answer":1,"chooseValue":"A"},{"id":"796234929007513601","questionId":"796234928009269249","content":" 91","answer":0,"chooseValue":"B"},{"id":"796234929028485121","questionId":"796234928009269249","content":" 113","answer":0,"chooseValue":"C"},{"id":"796234929053650945","questionId":"796234928009269249","content":" 153","answer":0,"chooseValue":"D"}],"userAnswer":null,"userChooseItem":null,"answerCorrect":null,"userCollect":null}]}}